Supplementary Material
CASPAR: A Hierarchical Bayesian Approach to
predict Survival Times in Cancer from Gene
Expression Data

L. Kaderali, T. Zander, U. Faigle, J. Wolf, J.L. Schultze, R. Schrader

Bioinformatics, 2006, to appear

1 Bayesian Cox Model - Details

For readers not familiar with the Cox regression model, a brief summary is
given in the following.

1.1 The Cox Regression Model

Let a clinical study with L patients be given. Consider the survival time of
patient j, t), a realization of a random variable TU). In addition to the
observed survival times tU) of patient j, j = 1, ..., L, one is given explanatory
variables z\) = (a:gj), ,xﬁ{)) for each patient j, assumed to correlate to
survival of the patient in some way. These variables are, in our setting, the
gene expression values as measured by a DNA microarray. The data for

individual j in the study is thus given as

{t(])7 Igj)’ ety a"’s},])} ?
where ng) is the i-th gene of the j—th individual. A functional dependence
hg (:c(J)) = tU) + ¢ is assumed, where @ is a vector of regression parameters,
and the observed survival times are corrupted by noise £. Hence, it is as-
sumed that there is a functional relationship linking the clinical outcome
() to the explanatory variables z(7).

In the proportional hazards model, also known as Cox regression model,
one assumes that the hazard for a given patient with observed characteristics

z, A(t|z), is given by
A(t|z, 8) == Ao (t)e?, (1)
where Ag(t) is an arbitrary base-line hazard function, and 8 = (61, ...,6,)
is the vector of regression parameters. The base-line hazard A\¢(t) describes
the hazard when z = 0, and is assumed to depend on time £.
The probability density function f(t) of the survival time 7, conditioned

on the explanatory variables x and the regression parameters 6, is then given
by

F(t]z,0) = Xo(£)e?® exp [—ef’w /0 " o(w) du] , 2)

and, by simple integration, the survivor function F'(t|z,0) = [[° f(t'|z,0) dt’
can be shown to be

F(t|z,0) = (exp [— /O o) du])exp[ew] . 3)

1.2 Estimating Cox’ # under censoring

We will now try to estimate one individual distribution for each patient 7,
depending on the patients gene expression values, stored in the vector).
For a regression model such as the Cox model (2), the question is how the
model parameters 6 can be estimated when censoring is present in the data.
In order to do so, it becomes necessary to explicitly model the censoring
process.

Let the censoring time CY) for patient j be a random variable with
survivor function

G(t) =P{CY >}

and density function g(t). Furthermore, let CV), ..., C(X) be independent of
one another and of the failure times I}(Tlge, ...,Tt(rLu)e. Note, that this model
includes the relevant case where a study ends at some prespecified time, and
patients enter the study randomly over time.

Under these assumptions, what is the probability of observing a survival

time) in the interval [t,¢ 4 dt]? If no censoring acts on TU) (§0) = 0),
P{tD e [t,t+dt],09 = 02D, 0} = P{tD e[t,t+dt],CY > 1z, 0}
= f(tz19,0)G(t)dt. (4)

Equivalently, the probability of censored survival time ¢) in the interval
[t,t + dt], with censoring taking place at t) (60) = 1), is

P{t) e [t,t +dt], 0 = 129),0} = g(t)F(t[z9), 0)at. (5)

2

Hence, when the censoring is not dependent on 8, the likelihood of the data
can be written as a function of 0:

Lp(0) =

f(t J)|a: H)G(t(j)) if) = 0 (no censoring)
t t(J)\x) if 6U) =1 (censored time)

1—¢W@) [§@)

g(tD)F(D|z0), 9)]

D), g)1=09 p(@)|50), 9), (6)

L
I,

_ ﬁ[|z, 0 G(t(j))]
117

The maximum likelihood solution to the problem of estimating 6 now is
a parameter #* maximizing (6). Note that this solution is not necessarily
unique. Employing the density function f(t|z,0) and the survivor function
F(t|z,0) from the Cox model,

f(t|.’£, 0) = ACo;u(t)eewei)‘c‘””(t)texp[ew] (7)

and
F(t|z,0) = exp [~ Acos (t)t]*P107] (8)

where Acop(t) is an assumed baseline hazard function, a maximum likeli-
hood solution for 8 from the Cox model can be computed using standard
optimization techniques.

2 Details on Gradient Descent Computation

In our work, we use the Cox regression model (2), with constant baseline
hazard function A\g(t) = Acor. Hence,

F(t],0) = Aoge?@e Acosterplos o)

and
F(t|z,0) = exp [—Acogt]Pl0%] | (10)

To account for censoring, we need to specify a distribution over the
censoring time. Assuming that a clinical study is run for a predetermined
time Typ1q1, and that patients enter the study randomly over time as they are
diagnosed, it may appear reasonable to assume a uniform distribution g(%)
over the total study time Tyo4q;, with survivor function G(t) = [g(u) du.

The probability distribution over the observed data given the model
parameters, p(D|6), is then given by

L L 11— , N 5@
p(D10) = [T [/¢D 2D, 006 D)] ™ [g¢) FEDsD, 0], (1)
j=1

see equation (6). Maximizing this probability with respect to the parameter
0 yields a parameter vector that is most likely given the data, provided one
has no a-priori expectations on . However, this estimate of 6 is based on
very few data points — in fact, frequently, far less data points than 6 has
components.

The problem of dataset sparsity can be remedied by assuming a strong
prior distribution on 6, which includes additional knowledge such as the
expectation that most features will be irrelevant, and drives the solution
towards corresponding “sparse” weight vectors #, where most components
0; are in the proximity of zero. Instead of the likelihood (11), we then
maximize the posterior p(f|D). The expectation that most features will be
irrelevant can be encoded by the ARD prior

0)=—2 T [[”’3] (12
pl) = ————— / 0y, “exp |—z—5 — aoy, | dog,, 12
L(y)r(2m)2 21 Jo % 203,

as described in the paper. This prior will not only keep the overall length
of the weight vector # small, in addition, it will guarantee that most of the
weights are close to zero, and only few weights are allowed to be significantly
non-zero — and hence to have a relevant impact on the prediction.

Using Bayes’ theorem, the posterior distribution is given by

p(D]0)p(0)
p(D)

and this term should be maximized with respect to 6.

When carrying out this maximization, the denominator p(D) can be ne-
glected, since it is independent of #. The same holds for the factors g(¢) and
G(t) in p(D|0), compare equation (11). Inserting (11) and (12) into equation
(13), taking the negative logarithm and dropping terms independent of 6,
maximization of p(6|D) with respect to € is equivalent to minimizing

p(0|D) = (13)

n

o0
162
MP:—l/T—2 a0y | doy,
;HO O'ei expl 20’31_ ao‘g;| 0'91

_ XL: [(1 — 60)) (gx(j) —)\cozt(j)e"w(”)) (Acomt(j)eaw(j))] '

" (14)

The first derivative of (14) with respect to 6; is given by

T o 1 62 9
, ,

J oy, ~ €xp [——a — 0,0'91:| é doy,
]

5 .
7 e T 1 ;2
e ,

6[o~ €exp [_Eéf - aogi] doy,
1

i [1- 5 (z(J) ACozt ()$l(j)69m(j)) - 5(]) ()\Co;ct(j)l‘z(-j)eam(j))] .

j=1
(15)

This derivative is required for gradient descent optimization, the integrals
in equations (14) and (15) are not analytically tractable, but can be approx-
imated numerically using Gauss-Laguerre quadrature.

3 Convergence of the Algorithm and Choice of
Starting Points for Gradient Descent

The choice of starting point for the gradient descent may have a significant
impact on results, in particular, when the function (14) minimized has many
local optima. The usual solution to this problem is to start the gradient
descent from multiple points, and select the best result from these iterations,
or to use randomization techniques such as simulated annealing to avoid local
minima.

In the special case where we expect a solution with most of the compo-
nents 6; in the proximity of zero, as discussed in the paper, one can actually
make use of this expectation when choosing the starting point for the gra-
dient descent. Why choose a starting point very far from the origin, when
we expect the solution to be in the proximity of the origin for most compo-
nents 6; anyway? This would only require the gradient descent algorithm to
traverse the long way back to the origin, with the danger of getting stuck in
local optima on the way.

It is for this reason that in most computations presented in this work,
the gradient descent algorithm was started at the origin. A comparison with
randomly chosen starting points showed that this is feasible, and usually

yields superior results. However, one problem with this choice of starting
point is that the prior distribution over the weights, p(6), has its peak at
the origin, and thus the posterior distribution p(6|D) potentially has a local
optimum here. To avoid this local optimum, we usually carried out one or
two steps of the gradient descent algorithm on the likelihood p(D|6) only,
before continuing on the posterior distribution p(6|D) « p(D|#)p(F). This
makes sure the algorithm does not remain in the local optimum at the origin.

4 Running Time

All calculations were carried out on a 3 GHz Pentium IV machine with 2 GB
of main memory and Linux 2.6.8. Computer programs were implemented in
C++ and compiled using the GNU gcc compiler, version 3.3.5.

Running times depend largely on the size of the dataset analyzed, in
particular, on the number of genes. For the DLBCL runs reported in the
paper, the running time per run is approximately 5 minutes and 6 seconds.
On the BC dataset, each single run of the crossvalidation analysis requires
approximately 6 minutes and 11 seconds, the full computation over the 125
runs thus requires about 13 hours.

