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1 Introduction

This work presents a Boolean satisfiability (SAT) encoding for a special problem
from combinatorial optimization. In the last years much progress has been made
in the optimization of practical SAT solvers (see the SAT competition [5]). This
has made SAT encodings for combinatorial problems highly attractive. In this
work we propose an encoding for the combinatorial problem Magic Labeling which
has important applications in the field of wireless networks [4]. It is defined as
follows. Let an undirected, unweighted graph G = (V, E) be given with vertex
set V and edge set E, where |V | = n and |E| = m. A labeling is a one-to-one
mapping λ : V ∪E → {1, 2, . . . , m + n}. Define the weight ω(e) of an edge e ∈ E
as the sum of the label of e and of the labels of its two endpoints. An edge-magic
total labeling (EMTL) is a labeling λ for which a constant h ∈ N exists such
that ω(e) = h for each edge e ∈ E. Similarly, define the weight ω(v) of a vertex
v ∈ V as the sum of the label of v and of the labels of all edges incident to v.
A vertex-magic total labeling (VMTL) is a labeling λ for which a constant k ∈ N

exists such that ω(v) = k for each vertex v ∈ V . Finally, a totally magic labeling
(TML) is a labeling λ for which (not necessarily equal) constants h, k ∈ N exist
such that λ is edge-magic with constant h and vertex-magic with constant k. h
and k are called magic constants. A vertex v ∈ V and an edge e ∈ E are denoted
neighboring, if e is incident to v. Note that different EMTLs exist for the same
graph, and the same holds for VMTLs. Surveys of results for magic graphs are
given in [4]. We consider the following three problems for a given graph:
(1) Does an EMTL exist with given magic constant h ∈ N?
(2) Does a VMTL exist with given magic constant k ∈ N?
(3) Does a TML exist with given magic constants h, k ∈ N?

The obvious method for these problems would be to use a backtracking approach.
In Section 2 we propose a general algorithm based on a SAT encoding and extend
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Preprint submitted to CTW 2008 10 May 2010



the encoding and the resulted algorithm to the following problems:
(4) Enumerate all EMTLs with given magic constant h ∈ N?
(5) Enumerate all VMTLs with given magic constant k ∈ N?
(6) Enumerate all TMLs with given magic constants h, k ∈ N?
In Section 3 we compare the performance of this SAT based algorithm and of a
backtracking algorithm for the problems (1) and (2).

2 SAT Encoding for Magic Labeling

In this section we consider the problems (1) to (3). Let G = (V, E) with |V | =
n, |E| = m and r := n + m. For our convenience, we define a fixed order-
ing on the set V ∪ E by the numbers 1, 2, . . . , n + m, i.e., each number of
{1, 2, . . . , n + m} represents an edge or a vertex of the graph. For the encod-
ing we use r2 Boolean variables xi,j with 1 ≤ i, j ≤ r, where we set xi,j =










True, if edge/vertex i receives label j

False, if edge/vertex i does not receive label j

Labeling Clauses: For receiving a feasible labeling we need the following con-
ditions. First each edge/vertex needs to have exactly one label. This leads to
the condition that for i = 1, 2, . . . , r exactly one j ∈ {1, 2, . . . , r} exists with
xi,j = True. Second each label has to be used by exactly one edge/vertex. This
leads to the condition that for j = 1, 2, . . . , r exactly one i ∈ {1, 2, . . . , r} ex-
ists with xi,j = True. All 2r restrictions have the same structure, namely that
exactly one of the r involved Boolean variables is set to True and the rest to
False. To represent this, we introduce 2r2 auxiliary variables y1, y2, . . . , y2r2,
with r y’s for one restriction. W.l.o.g., consider the first restriction, which con-
tains the Boolean variables x1,1, x1,2, . . . , x1,r, and the corresponding auxiliary
variables y1, y2, . . . , yr. For 1 ≤ k ≤ r we use yk to represent that at least one
of x1,1, x1,2, . . . , x1,k is True. Precisely, the y variables are defined as y1 = x1,1

or equivalently (¬x1,1 ∨ y1) ∧ (x1,1 ∨ ¬y1), and yk = x1,k ∨ yk−1 or equivalently
(yk ∨¬x1,k)∧ (yk ∨¬yk−1)∧ (¬yk ∨x1,k ∨ yk−1) for k = 2, 3, . . . , r. In addition, we
need to enforce that only one x1,i with 1 ≤ i ≤ r can be True. This means, if
x1,k is True, none of the x1i for 1 ≤ i < k ≤ r can be True. This is formulated
as ¬yk−1 ∨ ¬x1k for k = 2, . . . , r. Finally yr must be True.
Magic Clauses: Furthermore we have to add clauses which ensure that the con-
ditions of EMTL/ VMTL/TML are fulfilled. The following two conditions occur:
EMTL/TML: Set l := 2. For given h ∈ N and a given edge the sum of l+1 labels
(namely the label of the edge and of its l endpoint vertices) equals h.
VMTL/TML: For given k ∈ N and a given vertex with degree l ∈ N the sum of
l + 1 labels (namely the label of the vertex and of its l incident edges) equals k.
Observe that both conditions have the following structure: For given constants
c, l ∈ N the sum of l +1 labels equals c. For l ∈ N let W be the set containing all
possible l-tuples −→w = (w1, w2, . . . , wl) with wi ∈ {1, 2, . . . , r} for 1 ≤ i ≤ l and
wi 6= wj for 1 ≤ i < j ≤ l. Now let a constant c ∈ N be given and an edge or
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vertex f with corresponding l ∈ N, i.e., if f is an edge, then l = 2, and otherwise
l is the degree of f . We want to fulfill the magic condition for f . This means that
the sum of the label of f and of its neighboring elements is c. Let f1, f2, . . . , fl be
the neighboring elements of f . For this l compute the set W (which is easy for
small l) and choose an arbitrary element −→w ∈ W with w :=

∑l
i=1 wi. Then label

f1, f2, . . . , fl by w1, w2, . . . , wl, and consider the four cases:
Case 1: i ∈ {1, 2, . . . , l} exists with c−w = wi; Case 2: w ≥ c; Case 3: w < c−r;
Case 4: Otherwise.
As all labels are different and are contained in the set {1, 2, . . . , r}, it is clear that
for the Cases 1, 2, or 3 no labeling of f exists such that the sum of the labels of
f, f1, f2, . . . , fl is c. In these cases we add the clause ¬xf1,w1

∨¬xf2,w2
∨· · ·∨¬xfl,wl

meaning that labeling f1, f2, . . . , fl by w1, w2, . . . , wl is not possible. For Case 4
such a labeling is possible, but only if f is labeled with c − w. This leads to the
clause ¬xf1,w1

∨¬xf2,w2
∨ · · · ∨¬xfl ,wl

∨xf,c−w. Thus for each −→w ∈ W we have an
additional clause. Clearly, the number of possible sums and therefore the number
of magic clauses becomes rather large, if we consider VMTLs or TML for dense
graphs. In these cases the resulted algorithm has bad performance (see Section
3).
Enumerating All Magic Labelings: The SAT based representation allows
us to enumerate all magic labelings using a technique of Jin, Han, Somenzi [3],
which is applicable to general SAT instances. The main idea of this technique is
to add new clauses to a SAT model with purpose to enumerate all SAT solutions.
In our case we start with the presented SAT encoding. If this SAT encoding is
satisfiable, we receive a first magic labeling λ : {1, 2, . . . , r} → {1, 2, . . . , r}. This
means that in the SAT solution exactly the Boolean variables x1,λ(1), x2,λ(2), . . . ,
xr,λ(r) are set to True. Then we explicitly forbid this magic labeling by adding
the new clause ¬x1,λ(1) ∨¬x2,λ(2) ∨ · · · ∨¬xr,λ(r) to the current SAT instance. For
the updated SAT instance there are two possibilities. If the instance is satisfiable,
this leads to another magic labeling, as the first one is not allowed. If not, the
first magic labeling was the only one. This process can be iterated, until all or a
determined number of magic labelings has been found.

3 Experimental Results

In this section we compare our algorithm (called Sat-Magic) with a natural
backtracking algorithm (called Back-Magic). In Back-Magic all vertices and
edges are labeled in a fixed order, and if a partial labeling makes a magic la-
beling impossible, then a backtracking step occurs, i.e., a previous labeling of
a edge/vertex is changed, and the search continues at this step. All algorithms
have been implemented in C++, where we make use of an effective SAT solver
implemented by Eén and Sörensson, called MiniSat [2]. The experiments were
carried out on a PC with an Athlon 1900MP CPU with 2GB of memory. We test
random graphs with size n = 10, 15, where p = 10%, 20%, 30%, 40% edges are
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Size n 10 15

Type EMTL VMTL EMTL VMTL

Density p (%) 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Suc. Back (%) 40 20 10 0 100 0 0 0 0 0 0 0 0 0 0 0

Suc. Sat (%) 100 100 100 80 100 100 0 0 80 60 50 0 100 0 0 0

Table 1
Comparison of Sat Magic and Back Magic

chosen randomly and uniformly distributed from all possible n · (n − 1)/2 ones.
As only 3 connected TMLs are known [1], we do not consider TMLs, but only
EMTLs and VMTLs. Note that for each single instance we can easily compute
a lower bound lb ∈ N and an upper bound ub ∈ N for possible magic constants.
Then we choose min{10, ub − lb + 1} values of this interval [lb, ub] and for each
value we receive a single instance of the form (1) or (2). Thus we have 16 = 2 ·2 ·4
test classes, where each test class consists of up to 10 single instances.
In Table 3 for both algorithms and for each test class a percentage value is given
describing how many instances of this test class can be solved in 600 seconds.
The results clearly demonstrate the superiority of Sat-Magic in comparison to
Back-Magic. As expected, Sat-Magic behaves rather bad for VMTLs with
large density.
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