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1 Abstract

A tanglegram consists of a pair of (not necessarily binary) trees. Additional
edges, called tangles, may connect the leaves of the first with those of the
second tree. The task is to draw a tanglegram with a minimum number of
tangle crossings while making sure that the trees are drawn crossing-free.
This problem has relevant applications in computational biology, e.g., for the
comparison of phylogenetic trees. Most existing approaches are only applicable
for binary trees. In this work, we show that the problem can be formulated as
a quadratic linear ordering problem (QLO) with side constraints. In [1] it was
shown that, appropriately reformulated, the QLO polytope is a face of some
cut polytope. It turns out that the additional side constraints do not destroy
this property. Therefore, any polyhedral approach to max-cut can be used in
our context. We show that our approach is very efficient in practice for both
random and real-world binary as well as general tanglegrams.

2 Introduction

The task of drawing tanglegrams arises in several relevant applications, e.g.,
in computational biology for the comparison of phylogenetic trees. Moreover,
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tanglegrams occur when analyzing software projects in which a tree repre-
sents package, class and method hierarchies. This application yields tangle-
grams on trees that are not binary in general [5]. Most of the literature is
concerned with the case of binary trees and leaves that are in one-to-one cor-
respondence. [4] showed the NP-hardness of tanglegram layout, even in the
case of binary trees. Our approach, to be explained below, generalizes the ex-
act integer-programming (IP) approach of [5] for binary tanglegrams. In the
latter, minimizing the number of tangle crossings reduces to solving an un-
constrained quadratic binary optimization problem, which is well-known to be
equivalent to a maximum cut problem in some associated graph with an addi-
tional node [2]. In an undirected graph G = (V, E), the cut δ(W ) induced by
a set W ⊆ V is defined as the set of edges (u, v) such that u ∈ W and v 6∈ W .
If edge weights are given, the weight of a cut is the total weight of edges in
the cut. Now the maximum cut problem asks for a cut of maximal weight or
cardinality. While in the recent paper by [7] the focus is on binary instances,
a fixed-parameter algorithm for general tanglegram instances is presented.
According to our knowledge, this is the only algorithm that could deal with
non-binary trees; however, no implementation or running times are provided
making it impossible to evaluate its practical performance.

3 An Exact Model for General Tanglegrams

Let G = (V1∪V2, E) be a bipartite graph. The task is to draw G with straight
line edges. The nodes in V1 and V2 have to be placed on two parallel lines H1

and H2 such that the number of edge crossings is minimal. Assume for a
moment that the nodes on the H1 are fixed, and only the nodes on H2 are
permuted. For each pair of nodes on H2, we introduce a variable xuv such
that xuv = 1 if u is drawn to the left of v and xuv = 0 otherwise. For edges (i, k)
and (j, l) with i, j ∈ H1 and k, l ∈ H2, such that i is left of j, a crossing
exists if and only if l is left of k. We thus have to punish xlk in the objective
function. The task of minimizing the number of crossings is now equivalent to
determining a minimum linear ordering on the nodes of H2. Note that bipartite
crossing minimization with one fixed layer is already NP-hard [3]. If the nodes
on both layers are allowed to permute, the problem can be modeled as a
quadratic optimization problem over linear ordering variables. The quadratic
linear ordering problem (QLO) is

min
∑

(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO

xij ∈ {0, 1} ∀(i, j) ∈ J
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where PLO is the linear ordering polytope and

I = {(i, j, k, l) | i, j ∈ H1, i < j, and k, l ∈ H2, k < l}

J = {(i, j) | i, j ∈ H1 or i, j ∈ H2, i < j}

We replace each product xijxkl by a new binary variable yijkl and add the
linearization constraints yijkl ≤ xij , yijkl ≤ xkl, yijkl ≥ xij + xkl − 1. We call
the resulting linearized problem (LQLO). In [1] it was shown that a 0/1 vec-
tor (x, y) satisfying yijkl = xijxkl is feasible for (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 ∀(i, j, k, l) ∈ I, (1)

which is a quadratic reformulation of the constraints defining PLO. Note that
(LQLO) is a quadratic binary optimization problem where the feasible solu-
tions need to satisfy further side constraints. As unconstrained binary quadratic
optimization is equivalent to the maximum cut problem [2], the task is to
intersect a cut polytope with a set of hyperplanes. [1] showed that the hyper-
planes (1) cut out faces of the cut polytope.

Let us consider a triple of leaves a, b, c in one of the trees. In case all pairwise
lowest common ancestors coincide, all relative orderings between a, b, and c

are feasible. However, if the lowest common ancestor of, say, a and b is on a
lower level than that of, say, a and c, then c must not be placed between a

and b; see Figure 1.

a b c

Fig. 1. Leaf c is not allowed to lie
between a and b.

a b c d

r

Fig. 2. Variables xac and xbd can
be identified.

Therefore, we derive a betweenness restriction for every triple of leaves such
that two of the leaf pairs have different lowest common ancestors. Each re-
striction of the form ‘c cannot be placed between a and b’ can be written
as xacxcb = 0 and xbcxca = 0, i.e., yaccb = 0 and ycabc = 0. As mentioned
above, the polytope corresponding to (LQLO) is isomorphic to a face of a
cut polytope [1]. Since all y-variables are binary, the additional betweenness
constraints are always face-inducing for (LQLO).

Theorem 1 The problem of drawing tanglegrams with a minimum number of

edge crossings can be solved by optimizing over a face of a suitable cut polytope.
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4 Results

We implemented the above model. The naive approach is to solve the lin-
earized model (LQLO) using a standard integer programming solver. A more
advanced approach is to solve the quadratic reformulation (1), using separation
of cutting planes for max-cut, both in the context of integer and semidefinite
programming. For the IP-based methods, we used CPLEX 11.2, whereas for
the SDP approaches, we used the bundle method by [6]. For random and
real-world binary as well as general trees with low tangle density, the SDP
approach usually needs considerably more time than the IP-based methods.
Furthermore, memory requirements strongly increase with system size. On av-
erage, the fastest approaches are the pure standard linearization IP and the
quadratic reformulation QP. In fact, we can optimize tanglegrams with more
than 500 leaves in each tree which is the range of real-world instance sizes.
For big enough tangle density the SDP approach usually outperforms the IP
approaches. Memory requirements, however, usually prohibit solving binary
instances with more than 500 leaf nodes and tangle density of 1%. For general
trees, best performance is often found for the quadratic reformulation. These
non-binary instances could not be solved before by any other exact method.
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