
9th Cologne-Twente Workshop on
Graphs and Combinatorial

Optimization

Cologne, Germany, May 25-27, 2010

Extended Abstracts

Ulrich Faigle, Rainer Schrader, Daniel Herrmann (eds.)

hh

Table of Contents

Pablo Adasme, Abdel Lisser
Semidenite Programming for Stochastic Wireless OFDMA Networks 1

Edoardo Amaldi, Claudio Iuliano
On finding a minimum weight cycle basis with cycles of bounded length 5

Stephan Dominique Andres
The classification of B-perfect graphs 9

Avraham Trahtman, Tomer Bauer, Noam Cohen
Linear Visualization of a Road Coloring 13

Frank Baumann, Christoph Buchheim, Frauke Liers
Exact Bipartite Crossing Minimization under Tree Constraints 17

Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti
On the convergence of feasibility based bounds tightening 21

Andrea Bettinelli, Alberto Ceselli, Giovanni Righini
Branch-and-price for the multi-depot pickup and delivery
problem with heterogeneous fleet and soft time windows 25

Matthijs Bomhoff, Bodo Manthey
Bisimplicial Edges in Bipartite Graphs 29

Valentina Cacchiani, Alberto Caprara, Paolo Toth
A Heuristic Algorithm for the Train-Unit Assignment Problem 33

Alberto Ceselli, Roberto Cordone, Yari Melzani, Giovanni Righini
Optimization algorithms for the Max Edge Weighted Clique problem
with Multiple Choice constraints 37

Irene Charon, Olivier Hudry
A branch and bound method for a clique partitioning problem 43

Alberto Costa, Pierre Hansen, Leo Liberti
Static symmetry breaking in circle packing 47

Raphael Machado, Celina de Figueiredo, Nicolas Trotignon
Chromatic index of chordless graphs 51

I

Satoru Fujishige , Britta Peis
Lattice Polyhedra and Submodular Flows 55

Ismael Gonzalez Yero, Juan A. Rodriguez-Velazquez, Magdalena Lemanska
On the partition dimension of Cartesian product graphs 61

Stefano Gualandi, Federico Malucelli, Domenico Sozzi
On the Design of the Fiber To The Home Networks 65

Stefano Gualandi, Francesco Maffioli, Claudio Magni
A branch-and-price approach to the k-Clustering Minimum
Biclique Completion Problem 69

Guignard Adrien
The game chromatic number of 1-caterpillars 73

Jochen Harant
On Hamiltonian cycles through prescribed edges of a planar graph 79

Ararat Harutyunyan
Some bounds on alliances in trees 83

Johannes Hatzl
The Inverse 1-Median Problem in Rd with the Chebyshev-Norm 87

Shahadat Hossain, Trond Steihaug
Graph Models and their Efficient Implementation for
Sparse Jacobian Matrix Determination 91

Gerold Jaeger
An Effective SAT Encoding for Magic Labeling 97

Imed Kacem
New Fully Polynomial Time Approximation Scheme for the makespan
minimization with positive tails on a single machine
with a fixed non-availability interval 101

Enver Kayaaslan
On Enumerating All Maximal Bicliques of Bipartite Graphs 105

Walter Kern, Jacob Jan Paulus
A tight analysis of Brown-Baker-Katseff sequences
for online strip packing 109

Stefanie Kosuch, Marc Letournel, Abdel Lisser
On a Stochastic Knapsack Problem 111

II

Dmitrii Lozovanu, Stefan Pickl
Determining Optimal Stationary Strategies for Discounted
Stochastic Optimal Control Problem on Networks 115

Bodo Manthey, Kai Plociennik
Approximating Independent Set in Semi-Random Graphs 119

Jannik Matuschke
Lattices and maximum flow algorithms in planar graphs 123

Vahan Mkrtchyan, Eckhard Steffen
Maximum ∆-edge-colorable subgraphs of class II graphs 129

Petros Petrosyan, Ani Shashikyan, Arman Torosyan
Interval total colorings of bipartite graphs 133

Val Pinciu
Pixel Guards in Polyominoes 137

Rija Erves, Janez Zerovnik
Mixed connectivity of Cartesian graph products and bundles 141

Maja Rotovnik, Janez Zerovnik
Wide - sense nonblocking logd(N, 0, p) networks 145

Oliver Schaudt
Efficient total domination 149

Ingo Schiermeyer
Progress on rainbow connection 153

Joachim Spoerhase
An Optimal Algorithm for the Indirect Covering Subtree Problem 157

Cynthia Wyels, Maggy Tomova
Radio Labeling Cartesian Graph Products 163

Ping-Ying Tsai
Cycle embedding in alternating group graphs with faulty vertices
and faulty edges 169

Vera Weil
On Reed’s Conjecture in Triangle-Free Graphs 173

III

Appendix

Matjaz Konvalinka, Igor Pak
Complexity of O’Hara’s algorithm Appendix

IV

hh

hh

Semidefinite Programming for Stochastic

Wireless OFDMA Networks

Pablo Adasme a,1, Abdel Lisser a,2

aLaboratoire de Recherche en Informatique, Université Paris-Sud XI, Bâtiment
490, 91405, Orsay Cedex France

Key words: Risk modeling, stochastic programming, semidefinite programming,
resource allocation in OFDMA.

1 Introduction

Resource allocation such as maximizing link capacity or minimizing power con-
sumption in a wireless OFDMA network are commonly formulated as mathe-
matical programs [1]. These programs usually involve random variables in the
input data. In this paper, we propose a (0-1) stochastic quadratic formulation.
The study is made on the basis of an OFDMA quadratic model [4] in which a
probabilistic constraint based approach is considered [2]. Then, a semidefinite
programming (SDP) relaxation is derived to solve the stochastic quadratic
model. The paper is organized as follows: Section 2 presents the stochastic
quadratic formulation. Section 3 presents the SDP relaxation. Finally, section
4 concludes the paper.

2 Probabilistic formulation

We consider an OFDMA network composed by a base station (BS) and several
mobile users. The BS has to assign a set of N sub-carriers to a set of K users
using a modulation size of c ∈ {1, . . . ,M} bits in each sub-carrier. The goal
is to minimize the total power consumption in the network. We consider the
following probabilistic constrained model [4]:

1 Email: pablo.adasme@lri.fr
2 Email: abdel.lisser@lri.fr

CTW2010, University of Cologne, Germany. May 25-27, 2010

SQIP0: min{xk,n,yn,c}
∑K

k=1

∑N
n=1

∑M
c=1 P

c
k,nxk,nyn,c (1)

st: P{∑N
n=1 xk,n

[∑M
c=1 c · yn,c

]
≥ Rk} ≥ (1− αk), ∀k (2)

∑K
k=1 xk,n ≤ 1 ∀n (3)

∑M
c=1 yn,c ≤ 1 ∀n (4)

xk,n, yn,c ∈ {0, 1} (5)

Here, the objective function represents the total power consumption. The first
constraint corresponds to a chance constraint where αk is the risk to be taken
for each user k. In this model, we consider separated chance constraints. The
second constraint imposes that each sub-carrier should be assigned to only
one user at a time while the third one imposes that each sub-carrier must use
one integer modulation size. The decision variables are given by xk,n and yn,c,
respectively. We assume that Rk are random variables with joint probability
distribution H . Let us consider the case where H is concentrated in the fi-
nite number of points also called scenarios Rk = (rk,1, ..., rk,l, ..., rk,Lk

) with
probabilities pk,l such that

∑Lk
l=1 pk,l = 1, pk,l ≥ 0, ∀k.

Then, the problem (1)-(5) can be reformulated as follows [2]:

SQIP1: min{xk,n,yn,c}
∑K

k=1

∑N
n=1

∑M
c=1 P

c
k,nxk,nyn,c (6)

st:
∑N

n=1 xk,n

[∑M
c=1 c · yn,c

]
≥ rk,l ∀l ∈ Γk, ∀k (7)

∑
l∈Γk

pk,l ≥ 1− αk ∀k (8)
∑K

k=1 xk,n ≤ 1 ∀n (9)
∑M

c=1 yn,c ≤ 1 ∀n (10)

xk,n, yn,c ∈ {0, 1} (11)

Constraints (8) mean that we have to choose a subset Γk of scenarios such
that the sum of the probabilities of this subset is greater than (1 − αk). For
this subset, the bit rate constraints will be active and valid, whereas for the
scenarios not in this subset, the constraints are not activated.

This problem can be reformulated by introducing the auxiliary binary variable
ϕk,l for each observation l = 1 : Lk, ∀k as follows:

ϕk,l =




0 if l ∈ Γk

1 otherwise
(12)

This yields the following problem:

SQIP2: min{xk,n,yn,c,ϕk,l}
∑K

k=1

∑N
n=1

∑M
c=1 P

c
k,nxk,nyn,c (13)

2

st:
∑N

n=1 xk,n

[∑M
c=1 c · yn,c

]
≥ rk,l −Mϕk,l ∀k, l = 1 : Lk (14)

∑Lk
l=1 pk,lϕk,l ≤ αk ∀k (15)

∑K
k=1 xk,n ≤ 1 ∀n (16)

∑M
c=1 yn,c ≤ 1 ∀n (17)

xk,n, yn,c, ϕk,l ∈ {0, 1} (18)

where M is an arbitrary number such that

M ≥ max
k,l

{rk,l}+ 1 (19)

This problem is a quadratic optimization problem with binary variables. This
quadratic problem is NP-hard, and so is its stochastic formulation. In this
case, we seek lower bounds using strong relaxations, namely SDP relaxations.

3 Semidefinite relaxation

In order to write a SDP relaxation for SQIP2, we define the (0-1) vector zT =
(x1,1, · · · , x1,N , · · · , xK,1, · · · , xK,N , y1,1, · · · , y1,M , · · · , yN,1, · · · , yN,M , ϕ1,1, · · · ,
ϕ1,L1 , · · · , ϕK,1, · · · , ϕK,Lk

). Then, let Z be a symmetric positive semidefinite
matrix defined as:

Z =



zzT z

zT 1


 � 0 (20)

We can construct symmetric matrices P for the objective function in (13), Uk,l

for constraints in (14) and Vk for constraints in (15). We propose the following
SDP relaxation for SQIP2:

SSDP2 : min
Z

Trace(PZ) (21)

st: Trace(Uk,lZ) ≥ rk,l ∀k, l = 1 : Lk (22)

Trace(VkZ) ≤ αk ∀k (23)

Trace([exn][exn]
TZ) ≤ 1 ∀n (24)

Trace([eyn][eyn]
TZ) ≤ 1 ∀n (25)

Trace(ζck,nZ) ≥ 0 ∀k, n, c (26)

diag(zzT) = z (27)

Z � 0 (28)

3

In this model, [exn] and [eyn] are coefficient vectors for constraints in (16) and
(17) according to vector z. Thus, the rank-1 matrices we construct with these
vectors are used to strength our SDP relaxation [3]. The symmetric matrices
ζck,n for all {k, n, c} are used to have positive values in matrix Z only in the
positions where {Pi,j , i < j} is positive, this is, in the entries of P where we
put the elements {P c

k,n, k, n, c} from (13). Finally, constraint (27) together with
constraint (28) form a relaxation constraint for the condition of zi ∈ {0, 1} for
all i. The last constraint also imposes the condition on matrix Z to be positive
semidefinite. Our SDP relaxation is tighter than the linear program (LP) we
obtain by applying Fortet linearization method [5] to SQIP2 as shown by our
preliminary results.

4 Conclusions

In this paper, we proposed a stochastic quadratic formulation for wireless
OFDMA networks. To this purpose, we considered an OFDMA quadratic
model [4] in which probabilistic constraints are added by using the approach
of [2]. Finally, a SDP relaxation is derived. Numerical results are given.

References

[1] Amzallag, D. Armarnik, T. Livschitz, M. Raz, D.,“Multi-Cell Slots Allocation in
OFDMA Systems,” Mobile and Wireless Communications Summit, 16th IST,
2007.

[2] Lisser A., Lopez R. and Hu Xu, “Stochastic Quadratic Knapsack with
Recourse,” International Network Optimization Conference, INOC-2009, April
2009.

[3] Helmberg, C.,“Semidefinite Programming for Combinatorial Optimization,”
ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin, October 2000.

[4] Adasme Pablo, Lisser Abdel and Soto Ismael, “Robust Semidefinite Relaxations
for a New Quadratic OFDMA Resource Allocation Approach,” Working Paper
Number 1522, LRI, University of Paris Sud, France.

[5] Fortet R.,“Applications de l′algebre de boole en recherche operationelle,” Revue
Francaise de Recherche Operationelle, Vol. 4, pp. 17–26, 1960.

4

On finding a minimum weight cycle basis with

cycles of bounded length

Edoardo Amaldi a, Bernard Fortz b, Claudio Iuliano a

aDipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
{amaldi,iuliano}@elet.polimi.it

bDépartement d’Informatique, Faculté des Sciences, Université Libre de Bruxelles,
Bruxelles, Belgium

bernard.fortz@ulb.ac.be

Key words: undirected graphs, cycle basis, cycle, bounded length

1 Introduction

Consider a connected undirected graph G = (V,E) without loops and multiple
edges. Let n = |V | and m = |E| be respectively the number of vertices and
edges. A generalized cycle is a subset of edges C ⊆ E such that every vertex
of V is incident to an even number of edges in C. All the cycles of G form
a vector space, the so-called cycle space. Given an undirected graph G with
a nonnegative weight we assigned to each edge e ∈ E, the Minimum Cycle
Basis problem consists in finding a cycle basis C of minimum total weight
w(C) = ∑

C∈C w(C), where the weight of a cycle is defined as w(C) =
∑

e∈C we.
This problem has been extensively studied, both from the algorithmic and the
structural point of views. See the most recent works [1,2], the survey [9] and
the references therein.

In this work, we investigate an interesting and natural variant, that we refer to
as the Minimum cycle basis with cycles of bounded length problem. Given an
undirected graph G with a nonnegative weight we and a nonnegative length
le assigned to each edge e ∈ E and a positive integer L, we wish to find a
minimum (weight) cycle basis where each cycle C has a length l(C) =

∑
e∈C le

at most L. Without loss of generality we assume nonnegative integer weights
and lengths on all the edges. The special case in which each cycle must contain
at most k edges (le = 1 for each e ∈ E) is referred to as Minimum k-edge-cycle
basis. Cycles with a bounded number of edges naturally arise in a number of
contexts, see for instance [5], where k-edge-cycle bases play an important role.

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Minimum cycle bases with cycles of bounded length

The existence of a cycle basis with cycles of length at most L clearly depends
on the value of L and, as also noticed in [7], it can be checked in polynomial
time by looking for a cycle basis with a shortest (in terms of length) longest
cycle, see [3] for the algorithm. Even if the longest cycle has a length smaller
than L it is hard to find one with minimum total weight.

Proposition 1 The problem of finding a minimum cycle basis with cycles of
bounded length is NP-hard.

Proof We proceed by polynomial-time reduction from the Partition problem,
known to be NP-complete [6], to the decision version of the above problem.
In the Partition problem, given a set of N items, each with an integer size
aj , we have to decide whether there exists a subset A of items such that∑

j∈A aj = 1
2

∑N
j=1 aj . For each instance of the Partition problem it is easy

to construct a special instance of the Minimum cycle basis with cycles of
bounded length problem such that the answer to the former is yes if and
only if the answer to the latter is yes. Consider a graph with 2N + 1 vertices
v1 . . . v2N+1 and assume that they are ordered along a line. For every odd i,
with 1 ≤ i ≤ 2N , vi is connected to vi+1 by an edge with weight a(i+1)/2 and
length 0 and to vi+2 by an edge with length a(i+1)/2 and weight 0. For every
even i, with 1 ≤ i ≤ 2N , vi is connected to vi+1 by an edge with both weight
and length 0. The vertices v1 and v2N+1 are also connected by an edge with
both weight and length 0. Hence, the total number of edges is equal to 3N+1.
Let W = L = 1

2

∑N
j=1 aj . A minimum cycle basis consists of N + 1 cycles: the

N smaller cycles with both weight and length aj (for a partial total weight
2W) and the larger cycle given by the edge joining v1 and v2N+1 plus a path
through the other vertices. Finding a cycle basis with total weight ≤ 3W and
with cycles whose length is bounded by L corresponds to finding a path with
total weight ≤ W and length ≤ L from v1 to v2N+1 in the above graph without
the edge joining them. This path yields a partition into nonzero-weight edges
and nonzero-length edges that solves the Partition problem. 2

We now show that the Minimum k-edge-cycle basis problem, namely the spe-
cial case where le = 1 for each e ∈ E, can be solved in polynomial time. We
adapt Horton’s approach [8] to the bounded problem. In Horton’s algorithm,
a polynomial subset of candidate cycles is generated. For every vertex x ∈ V
and every edge e = {y, z} ∈ E we consider the cycle C formed by the union
of the two minimum weight paths pxy and pxz from x to the endpoints of e, y
and z, plus the edge e itself, i.e., C = pxy + pxz + {y, z}. We say that C has
a representation (x, {y, z}). The candidate cycles are then sorted by nonde-
creasing weight and a minimum cycle basis is given by the m− n+ 1 lightest
independent cycles.

6

Unfortunately, a minimum k-edge-cycle basis is not guaranteed to be contained
in the set of Horton candidate cycles. As an example, consider the sunflower
graph in [9, Fig. 7] and assume that the three edges of the internal triangle
have weight equal to 3 whereas the other edges have weight equal to 1. The
unique 3-edge-cycle basis is given by the four triangles, but the internal one
is not a Horton candidate cycle.

The proposition in [8] stating that given a cycle C in a minimum cycle basis, for
any pair of vertices u, v ∈ C the minimum weight path puv must be contained
in C, is no longer valid. Denoting by pluv the minimum weight path between
vertices u and v with a most l edges, we have the following result.

Proposition 2 For any two vertices u and v of a cycle C in a minimum
k-edge-cycle basis, let P1(u, v) and P2(u, v) be the two paths joining vertices
u and v in C. Given two integers l1 and l2 greater than the number of edges
in P1(u, v) and P2(u, v), respectively, and such that l1 + l2 = k, at least one
between pl1uv and pl2uv must be contained in C.

Proof Suppose it is not true. Then C can be obtained as the composition of
three cycles P1(u, v) + pl2uv, P2(u, v) + pl1uv, and pl1uv + pl2uv, all of lighter weight
than C and with a number of edges bounded by k. Thus C cannot be contained
in a minimum k-edge-cycle basis. 2

All the candidate k-edge-cycles can be generated by considering C = pl1xy +
pl2xz + {y, z} for any vertex x ∈ V , edge e = {y, z} ∈ E and all the k − 2
possible choices of positive integers l1 and l2 such that l1+ l2 = k−1, as in [7].
This naive approach can, however, be improved on by exploiting the notion
of isometric cycle [1] for the unconstrained case. A cycle C is isometric if and
only if it has a representation (x, {y, z}) for each vertex x ∈ C.

Proposition 3 Every isometric cycle C has a representation (x, {y, z}) for
a certain pair of vertex x ∈ V and edge {y, z} ∈ E that is balanced, i.e., such
that the difference between the number of edges in pxy and pxz is 1 if C has an
even number of edges and 0 if odd.

For the lack of space, we cannot report the proof that is based on the efficient
O(nm) procedure for detecting isometric cycles proposed in [1]. The above
result is also valid for cycles with at most k edges. Indeed, we only need to
generate the candidate k-edge-cycles C = pl1xy + pl2xz + {y, z} for every vertex
x ∈ V and edge e = {y, z}, for a choice of l1 and l2 leading to a balanced
representation, if it exists. In this set of O(nm) candidate k-edge-cycles, each
cycle has a length of at most k. Since k is a constant, the total number of edges
in all these cycles is O(nm). Thus, by using the improved independence test
recently proposed in [2], we obtain an O(m2n/ log n) deterministic algorithm
like for the unconstrained case. The independence test is inspired by de Pina’s
method [4], that maintains at each step a basis of the linear space that is

7

orthogonal to the subspace spanned by the cycles selected so far. It takes
advantage of the divide and conquer scheme presented in [10] and uses a bit
packing technique that exploits the sparseness property, namely the fact that
the number of edges in all the candidate cycles is O(nm).

Finally, it is worth pointing out that, although de Pina’s algorithm [4] (im-
proved in [10]) can be easily adapted to solve Minimum k-edge-cycle basis
problem by just considering minimum weight paths with at most k edges, it
leads to a worse O(m2n+mn2 logn) complexity.

References

[1] E. Amaldi, C. Iuliano, T. Jurkiewicz, K. Mehlhorn, and R. Rizzi. Breaking the
O(m2n) barrier for minimum cycle bases. In A. Fiat and P. Sanders, editors,
ESA, volume 5757 of LNCS, pages 301–312. Springer, 2009.

[2] E. Amaldi, C. Iuliano, and R. Rizzi. Efficient deterministic algorithms for
finding a minimum cycle basis in undirected graphs. In F. Eisenbrand and
B. Shepherd, editors, Integer Programming and Combinatorial Optimization
(IPCO), volume 6080 of LNCS, pages 397–410. Springer, 2010.

[3] D. M. Chickering, D. Geiger, and D. Heckerman. On finding a cycle basis with
a shortest maximal cycle. Inf. Process. Lett., 54(1):55–58, 1995.

[4] J. C. De Pina. Applications of shortest path methods. PhD thesis, University
of Amsterdam, The Netherlands, 1995.

[5] B. Fortz and M. Labbé. Two-connected networks with rings of bounded
cardinality. Computational Optimization and Applications, 27(2):123–148, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, USA, 1979.

[7] D. S. Hochbaum and E. V. Olinick. The bounded cycle-cover problem.
INFORMS J. on Computing, 13(2):104–119, 2001.

[8] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM J. Computing, 16(2):358–366, 1987.

[9] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and
K. A. Zweig. Cycle bases in graphs characterization, algorithms, complexity,
and applications. Computer Science Review, 3(4):199–243, 2009.

[10] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. An Õ(m2n) algorithm
for minimum cycle basis of graphs. Algorithmica, 52(3):333–349, 2008.

8

The classification of B-perfect graphs

Stephan Dominique Andres

Department of Mathematics and Computer Science, FernUniversität in Hagen,
Germany

Key words: game chromatic number, game-perfectness, trivially perfect, graph
colouring game

1 Introduction

Consider the following game, played on an (initially uncolored) graph G =
(V,E) with a color set C. The players, Alice and Bob, move alternately. A
move consists in coloring a vertex v ∈ V with a color c ∈ C in such a way
that adjacent vertices receive distinct colors. If this is not possible any more,
the game ends. Alice wins if every vertex is colored in the end, otherwise Bob
wins.

This type of game was introduced by Bodlaender [2]. He considers a variant,
which we will call game g, in which Alice must move first and passing is not
allowed. In order to obtain upper and lower bounds for a parameter associated
with game g, two other variants are useful. In the game B Bob may move first.
He may also miss one or several turns, but Alice must always move. In the
other variant, game A, Alice may move first and miss one or several turns, but
Bob must move. So in game B Bob has some advantages, whereas in game A
Alice has some advantages with respect to Bodlaender’s game.

For any variant G ∈ {B, g, A}, the smallest cardinality of a color set C, so
that Alice has a winning strategy for the game G is called G-game chromatic
number χG(G) of G.

Email address: dominique.andres@fernuni-hagen.de (Stephan Dominique
Andres).

URL:
http://www.fernuni-hagen.de/MATHEMATIK/DMO/mitarbeiter/andres.html

(Stephan Dominique Andres).

CTW2010, University of Cologne, Germany. May 25-27, 2010

Let ω(G) be the clique number of a graph G. G is called B-perfect if, for
any induced subgraph H of G, χB(H) = ω(H). Analogously, we define A-
perfect with respect to the game A and g-perfect with respect to Bodlaender’s
game. These concepts were introduced in [1] and are game-theoretic analoga of
perfect graphs which are those graphs in which, for any induced subgraph H ,
the clique number equals the chromatic number χ(H). For any graph H ,

ω(H) ≤ χ(H) ≤ χA(H) ≤ χg(H) ≤ χB(H).

In particular, B-perfect graphs are g-perfect, g-perfect graphs are A-perfect,
and A-perfect graphs are perfect. We consider the problem of characterizing
these classes of graphs. The (probably most difficult) case of perfect graphs
has been solved by the Strong Perfect Graph Theorem [3]:

Theorem 1 (Chudnovsky, Robertson, Seymour, Thomas (2006)) A
graph is perfect if, and only if, it does neither contain an odd hole nor an odd
antihole as induced subgraph.

In this talk we will characterize B-perfect graphs.

2 Main result

Theorem 2 Let G be a graph. Then the following conditions are equivalent:

(i) G is B-perfect.
(ii) G does neither contain a C4, nor a P4, nor a split 3-star, nor a double fan

as induced subgraph (see Fig. 1).
(iii) For every (nonempty) component H of G, there is k ≥ 0, so that

H = K1 ∨ (H0 ∪H1 ∪ . . . ∪Hk),

where the Hi are complete graphs for i ≥ 1, and H0 is either empty or there
are p, q, r ∈ N, so that H0 = Kp ∨Kr ∨Kq (see Fig. 2).

C4 P4 split 3-star double fan

Fig. 1. 4 forbidden induced subgraphs for B-perfect graphs

PROOF. (i) =⇒ (ii): Winning strategies for Bob with ≤ 2 colors on C4 resp.
P4 resp. with ≤ 3 colors on the split 3-star resp. the double fan are obvious.

10

H1

H2
H3

H4

Kp KqKr

H0

Fig. 2. Structure of a component according to (iii)

(iii) =⇒ (i): We describe a winning strategy for Alice with ω(G) colors on
a graph G as in (iii). This is sufficient since every induced subgraph of G is
of the same type as described in (iii). For H0 = Kp ∨ Kr ∨ Kq let the Kp

and the Kq be the ears. Alice always responds to Bob’s moves in the same
component H (if Bob passes, in an arbitrary component). As long as Bob
does not play in an ear, Alice does not play in an ear; she first colors the
universal vertex of H . If Bob plays in an ear Kp, Alice colors a vertex in the
corresponding ear Kq with the same color (in case there is no uncolored vertex
she uses the strategy described before). If Alice is forced to start coloring an
ear, then all non-ear-vertices are colored, so a coloring of the ears is possible
without creating danger for a non-ear-vertex.

(ii) =⇒ (iii): We examine the structure of a graph G without induced P4, C4,
split 3-star, double fan. Let H be a component of G. We use the following
lemma of Wolk [5].

Lemma 3 (Wolk (1965)) A connected graph without induced C4 and P4 (a
so-called trivially perfect graph [4]) has a universal vertex.

So, H has a universal vertex v. Let H0, . . . , Hn be the components of H \ v.
Using the fact that H does not contain a double fan we can prove the following

Claim 4 At most one of the Hi is not complete.

Let H0 be the (only) component of H \ v which is not complete. Let K be the
largest clique of H0. We are done if we show:

Claim 5 H0 \K induces a clique.

Claim 6 H0 \K induces a module of H0 (i.e. if x ∈ K, either x is adjacent
to all y ∈ H0 \K or to none.)

The proof of Claim 5 uses Lemma 3 again and the fact that H does neither
contain a split 3-star nor a P4. The proof of Claim 6 uses Claim 5 and the fact
that H does neither contain a P4 nor a C4.

11

Claim 4, Claim 5 and Claim 6 together imply that H has the structure as
described in (iii): H0 \K corresponds to the Kp, its neighbors correspond to
the Kr, and the rest of H0 corresponds to the Kq. This completes the proof
of Theorem 2. 2

3 Open problems

Problem 7 Characterize A-perfect graphs by forbidden induced subgraphs.

Problem 8 Characterize g-perfect graphs by forbidden induced subgraphs.

We discuss some partial results concerning these problems. The following are
already known, cf. [1]:

Theorem 9 A triangle-free graph G is A-perfect if, and only if, every com-
ponent of G is either K1 or Km,n or Km,n − e, where e is an edge.

Theorem 10 Complements of bipartite graphs are A-perfect.

References

[1] Andres, S. D., Game-perfect graphs, Math. Meth. Oper. Res. 69 (2009), 235–250

[2] Bodlaender, H. L., On the complexity of some coloring games, Int. J. Found.
Comput. Sci. 2, no.2 (1991), 133–147

[3] Chudnovsky, M., N. Robertson, P. Seymour, and R. Thomas, The strong perfect
graph theorem, Ann. Math. 164 (2006), 51–229

[4] Golumbic, M. C., Trivially perfect graphs, Discrete Math. 24 (1978), 105–107

[5] Wolk, E. S., A note on “the comparability graph of a tree”, Proc. Am. Math.
Soc. 16 (1965), 17–20

12

Linear Visualization of a Road Coloring

Algorithm

A.N. Trahtman, T. Bauer and N. Cohen

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel

Abstract

The visualization has become essential in many application areas. The finite graphs
and automata undoubtedly belong to such areas. A problem of a visual image of a
directed finite graph has appeared in the study of the road coloring conjecture.

Given a finite directed graph, a coloring of its edges turns the graph into finite-
state automaton. The visual perception of the structure properties of automata is
an important goal. A synchronizing word of a deterministic automaton is a word
in the alphabet of colors of its edges that maps the automaton to a single state. A
coloring of edges of a directed graph is synchronizing if the coloring turns the graph
into a deterministic finite automaton possessing a synchronizing word.

The road coloring conjecture [1], [2] was stated about forty yeas ago for a complete
strongly connected directed finite graph with constant outdegree of all its vertices
where the greatest common divisor (gcd) of lengths of all its cycles is one. The edges
of the graph being unlabelled, the task is to find a labelling that turns the graph
into a deterministic finite automaton possessing a synchronizing word. Such graph
has according to the conjecture a synchronizing coloring.

The problem belonged to the most fascinating problems in the theory of finite au-
tomata [9], [4] and was mentioned in the popular Internet Encyclopedia ”Wikipedia”
on the list of the most interesting unsolved problems in mathematics. The positive
solution of the road coloring problem [13] is a basis of a polynomial-time imple-
mented algorithm of O(n3) complexity in the worst case.

The realization of the considered algorithm is demonstrated by a high-speed vi-
sualization program. The visibility of inner structure of a digraph without doubt is
a matter of interest not only for road coloring, the range of the application may be
significantly wider.

Crucial role in the visualization plays for us the correspondence of the layout
to the human intuition, the perception of the structure properties of the graph
and the rapidity of the appearance of the image. We use for this aim some known
approaches [11], [14] together with some new productive ideas. Our algorithm for the
visualization is linear in the size of the automaton. This algorithm not complicated
at first sight successfully solves a whole series of tasks of the disposal of the objects.

The visualization of the transition graph of the automaton is a help tool of the

CTW2010, University of Cologne, Germany. May 25-27, 2010

study of the automata. Thus the linearity of the algorithm is comfortably and
important. Both the road coloring algorithm and the visualization algorithm are
implemented in the package TESTAS (www.cs.biu.ac.il/∼trakht/syn.html).

As usual, we regard a directed graph with colors assigned to its edges as a fi-
nite automaton, whose input alphabet consists of these colors. The graph is called
transition graph of the automaton.

An automaton is deterministic if no state has two outgoing edges of the same
color. In complete automaton each state has outgoing edges of any color.

Let |P | denote the size of the subset P of states from an automaton (of vertices
from a graph).

Let Ps be the set of states ps for p ∈ P s ∈ Σ+. For the transition graph Γ of
an automaton let Γs denote the map of the set of states of the automaton.

A word s ∈ Σ+ is called a k-synchronizing word of the automaton with transition
graph Γ if both |Γs| = k and for all words t ∈ Σ∗ holds |Γt| ≥ k.

A pair of distinct states p,q of an automaton (of vertices of the transition graph)
will be called synchronizing if ps = qs for some s ∈ Σ+.

A synchronizing pair of states p, q of an automaton is called stable if for every
word u the pair pu,qu is also synchronizing [4], [?].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

Imagine a map with roads which are colored in such a way that a fixed sequence of
colors, called a synchronizing sequence, leads to a fixed place whatever is the starting
point. Finding such a coloring is called em road coloring problem. The roads of the
map are considered as edges of a directed graph. The visual presentation of a road
coloring algorithm is essentially based on the paths of the graph. The paths must
be visible as well as cycles, bunches and other structure components of the graph.
In particular, the notion of the bunch according to the following lemma plays some
role in the road coloring algorithm.

Lemma 1 [13] If some vertex of graph Γ has two incoming bunches then there
exists a stable pair by any coloring.

The role of the length of a path is also important.

Lemma 2 [13] Let any vertex of the graph Γ have no two incoming bunches. Then
a subgraph of Γ of some color has maximal subtree.

A crucial role in the visualization plays in our opinion the correspondence of the
layout to the human intuition, the perception of the structure properties of the graph
and the rapidity of the appearance of the image. The automatically drawn graphical
image must resemble the last one of a human being. The considered visualization is
a help tool for any program dealing with transition graph of DFA and in particular
for the road coloring algorithm.

Our main objective is the visual representation of the transition graph of a de-
terministic finite automaton based on the structure properties of the graph. Any
deterministic finite automaton is accepted by the algorithm.

14

Among the important visual properties of a graph one can mention paths, cycles,
strongly connected components, cliques, bunches etc. These important properties
reflect the inner structure of the digraph. The special significance plays here the
strongly connected components (SCC). Thus our first step is the eduction and
selection of the SCC. We choose to place SCC according to a cyclic layout[11],
[14]. According to approach the vertices are placed at the periphery of a circle.
Our modification of the approach considered two levels of circles, the first level
consists of strongly connected components, the second level corresponds to the whole
graph with SCC at the periphery of the circle. The visual placement is based on
the structure of the graph considered as a union of the set of strongly connected
components.

It is clear that the curve edges (used, for instance, in the package GraphViz
[6], [10]) hinder to recognize the cycles and paths. Therefore, we use only direct
and, hopefully, short edges. We have changed some priorities of the layout and, in
particular, eliminate the goal of reducing the number of intersections of the edges
as it was an important aim in some algorithms [10]. The intersections of the edges
are even not considered in our algorithm. This approach gives us an opportunity
to simplify essentially the algorithm and to reduce its complexity. Our main intent
is only not to stir by the intersections of the edges to conceive the structure of the
graph. The intersections are placed in our algorithm far from the vertices due to the
cyclic layout [14], [11] we use. The area of vertices differs of the area of the majority
of intersections.

The problem of the placing of the labels near corresponding edges is sometimes
very complicated and frequently the connection between edge and its label is not
clear. Our solution is to use colors on the edges instead of labels and exclude the
placing of labels.

The quick linear algorithm for finding SCC [3] is implemented in the program.
The vertices of every SCC belong to a cycle in the graph layout. So strongly con-
nected components can be easily recognized by observer. All SCC are placed on the
periphery of a big circle. So the pictorial diagram demonstrates the structure of the
graph and the visualization can be considered as a kind of structure visualization.

The periphery of a circle of SCC is the most desirable area for placing the edges
because the edges in this case are short. We choose the order of the vertices of
the SCC on the circle according to this purpose. The length of some edges can be
reduced in a such way. It also helps an observer to recognize paths and cycles on
the screen.

The linearity of the algorithm ensures the momentary appearance of the layout. It
is favorably also for educational purposes because the road coloring conjecture can
be stated in simple terms and initial explorations can be done immediately. It can
be understood by any student with a little experience in the graph theory. ”The
Road Coloring Conjecture makes a nice supplement to any discrete mathematics
course” [7].

The complexity of the algorithm describes the following

Lemma 3 The time and space complexity of the visualization algorithm described
above is linear in the sum of states and edges of the transition graph of automaton.

15

References

[1] R.L. Adler, L.W. Goodwyn, B. Weiss. Equivalence of topological Markov shifts,
Israel J. of Math. 27(1977), 49-63.

[2] R.L. Adler, B. Weiss. Similarity of automorphisms of the torus, Memoirs of the
Amer. Math. Soc., Providence, RI, 98(1970).

[3] A. Aho, J. Hopcroft, J. Ulman. The Design and Analisys of Computer
Algorithms, 1974, Addison-Wesley.

[4] K. Culik II, J. Karhumaki, J. Kari. A note on synchronized automata and Road
Coloring Problem, Lect. Notes in Comput. Sci., 2295, 2002, 175-185.

[5] J. Černy. Poznamka k homogenym eksperimentom s konechnymi automatami.
Math.-Fyz. Čas., 14, 1964, 208-215.

[6] J. Ellson, E. Gansner, L. Koutsofios, et al.. GraphViz - open source graph
drawing tools, Graph Drawing, 2265, 2002, 483-484.

[7] J. V. Rauff, Way back from anywhere: exploring the road coloring conjecture.
Math. and Comput. Education. 01, 2009.

[8] A. Roman. Synchronizing finite automata with short reset words. Applied Math.
and Comput. 1, 209, 2009, 125-136.

[9] A. Mateescu, A.Salomaa, Many-valued truth function. Černy conjuncture and
road coloring, EATCS Bulletin, 68(1999) 134-150.

[10] M.Simonato, 2004, An Introduction to GraphViz.

[11] JM. Six, IG. Tollis, A framework for user-grouped circular drawings Lect. Notes
in Comp. Sci., 1731, 1999, 107-116.

[12] A.N. Trahtman, Notable trends concerning the synchronization of graphs and
automata. El. Notes in Discr. Math., 25, 2006, 173-175

[13] A.N. Trahtman. Synchronizing Road Coloring. 5-th IFIP WCC-TCS, Springer,
273, 2008, 43-53.

[14] R. Wiese, M. Eiglsperger, M. Kaufmann. 2002, A framework for circular
drawings of network

16

Exact Bipartite Crossing Minimization under

Tree Constraints ⋆

Frank Baumann a Christoph Buchheim a Frauke Liers b

aTechnische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,
44227 Dortmund, Germany

bUniversität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln,
Germany

Key words: tanglegram, crossing minimization, quadratic programming

1 Abstract

A tanglegram consists of a pair of (not necessarily binary) trees. Additional
edges, called tangles, may connect the leaves of the first with those of the
second tree. The task is to draw a tanglegram with a minimum number of
tangle crossings while making sure that the trees are drawn crossing-free.
This problem has relevant applications in computational biology, e.g., for the
comparison of phylogenetic trees. Most existing approaches are only applicable
for binary trees. In this work, we show that the problem can be formulated as
a quadratic linear ordering problem (QLO) with side constraints. In [1] it was
shown that, appropriately reformulated, the QLO polytope is a face of some
cut polytope. It turns out that the additional side constraints do not destroy
this property. Therefore, any polyhedral approach to max-cut can be used in
our context. We show that our approach is very efficient in practice for both
random and real-world binary as well as general tanglegrams.

2 Introduction

The task of drawing tanglegrams arises in several relevant applications, e.g.,
in computational biology for the comparison of phylogenetic trees. Moreover,

⋆ Financial support from the German Science Foundation (DFG) is acknowledged
under contracts Bu 2313/1–1 and Li 1675/1–1.

CTW2010, University of Cologne, Germany. May 25-27, 2010

tanglegrams occur when analyzing software projects in which a tree repre-
sents package, class and method hierarchies. This application yields tangle-
grams on trees that are not binary in general [5]. Most of the literature is
concerned with the case of binary trees and leaves that are in one-to-one cor-
respondence. [4] showed the NP-hardness of tanglegram layout, even in the
case of binary trees. Our approach, to be explained below, generalizes the ex-
act integer-programming (IP) approach of [5] for binary tanglegrams. In the
latter, minimizing the number of tangle crossings reduces to solving an un-
constrained quadratic binary optimization problem, which is well-known to be
equivalent to a maximum cut problem in some associated graph with an addi-
tional node [2]. In an undirected graph G = (V,E), the cut δ(W) induced by
a set W ⊆ V is defined as the set of edges (u, v) such that u ∈ W and v 6∈ W .
If edge weights are given, the weight of a cut is the total weight of edges in
the cut. Now the maximum cut problem asks for a cut of maximal weight or
cardinality. While in the recent paper by [7] the focus is on binary instances,
a fixed-parameter algorithm for general tanglegram instances is presented.
According to our knowledge, this is the only algorithm that could deal with
non-binary trees; however, no implementation or running times are provided
making it impossible to evaluate its practical performance.

3 An Exact Model for General Tanglegrams

Let G = (V1∪V2, E) be a bipartite graph. The task is to draw G with straight
line edges. The nodes in V1 and V2 have to be placed on two parallel lines H1

and H2 such that the number of edge crossings is minimal. Assume for a
moment that the nodes on the H1 are fixed, and only the nodes on H2 are
permuted. For each pair of nodes on H2, we introduce a variable xuv such
that xuv = 1 if u is drawn to the left of v and xuv = 0 otherwise. For edges (i, k)
and (j, l) with i, j ∈ H1 and k, l ∈ H2, such that i is left of j, a crossing
exists if and only if l is left of k. We thus have to punish xlk in the objective
function. The task of minimizing the number of crossings is now equivalent to
determining a minimum linear ordering on the nodes ofH2. Note that bipartite
crossing minimization with one fixed layer is already NP-hard [3]. If the nodes
on both layers are allowed to permute, the problem can be modeled as a
quadratic optimization problem over linear ordering variables. The quadratic
linear ordering problem (QLO) is

min
∑

(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO

xij ∈ {0, 1} ∀(i, j) ∈ J

18

where PLO is the linear ordering polytope and

I = {(i, j, k, l) | i, j ∈ H1, i < j, and k, l ∈ H2, k < l}
J = {(i, j) | i, j ∈ H1 or i, j ∈ H2, i < j}

We replace each product xijxkl by a new binary variable yijkl and add the
linearization constraints yijkl ≤ xij , yijkl ≤ xkl, yijkl ≥ xij + xkl − 1. We call
the resulting linearized problem (LQLO). In [1] it was shown that a 0/1 vec-
tor (x, y) satisfying yijkl = xijxkl is feasible for (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 ∀(i, j, k, l) ∈ I, (1)

which is a quadratic reformulation of the constraints defining PLO. Note that
(LQLO) is a quadratic binary optimization problem where the feasible solu-
tions need to satisfy further side constraints. As unconstrained binary quadratic
optimization is equivalent to the maximum cut problem [2], the task is to
intersect a cut polytope with a set of hyperplanes. [1] showed that the hyper-
planes (1) cut out faces of the cut polytope.

Let us consider a triple of leaves a, b, c in one of the trees. In case all pairwise
lowest common ancestors coincide, all relative orderings between a, b, and c
are feasible. However, if the lowest common ancestor of, say, a and b is on a
lower level than that of, say, a and c, then c must not be placed between a
and b; see Figure 1.

a b c

Fig. 1. Leaf c is not allowed to lie
between a and b.

a b c d

r

Fig. 2. Variables xac and xbd can
be identified.

Therefore, we derive a betweenness restriction for every triple of leaves such
that two of the leaf pairs have different lowest common ancestors. Each re-
striction of the form ‘c cannot be placed between a and b’ can be written
as xacxcb = 0 and xbcxca = 0, i.e., yaccb = 0 and ycabc = 0. As mentioned
above, the polytope corresponding to (LQLO) is isomorphic to a face of a
cut polytope [1]. Since all y-variables are binary, the additional betweenness
constraints are always face-inducing for (LQLO).

Theorem 1 The problem of drawing tanglegrams with a minimum number of
edge crossings can be solved by optimizing over a face of a suitable cut polytope.

19

4 Results

We implemented the above model. The naive approach is to solve the lin-
earized model (LQLO) using a standard integer programming solver. A more
advanced approach is to solve the quadratic reformulation (1), using separation
of cutting planes for max-cut, both in the context of integer and semidefinite
programming. For the IP-based methods, we used CPLEX 11.2, whereas for
the SDP approaches, we used the bundle method by [6]. For random and
real-world binary as well as general trees with low tangle density, the SDP
approach usually needs considerably more time than the IP-based methods.
Furthermore, memory requirements strongly increase with system size. On av-
erage, the fastest approaches are the pure standard linearization IP and the
quadratic reformulation QP. In fact, we can optimize tanglegrams with more
than 500 leaves in each tree which is the range of real-world instance sizes.
For big enough tangle density the SDP approach usually outperforms the IP
approaches. Memory requirements, however, usually prohibit solving binary
instances with more than 500 leaf nodes and tangle density of 1%. For general
trees, best performance is often found for the quadratic reformulation. These
non-binary instances could not be solved before by any other exact method.

References

[1] C. Buchheim and A. Wiegele, and L. Zheng. Exact Algorithms for the
Quadratic Linear Ordering Problem. INFORMS Journal on Computing.
To appear.

[2] C. De Simone. The Cut Polytope and the Boolean Quadric Polytope.
Discrete Mathematics, 79; 71–75, 1989.

[3] P. Eades and N. C. Wormald. Edge crossings in drawing bipartite graphs.
Algorithmica, 11; 379–403, 1994.

[4] H. Fernau and M. Kaufmann, and M. Poths. Comparing trees via crossing
minimization. Journal of Computer and System Sciences. In Press.

[5] M. Nöllenburg, M. Völker, A. Wolff, and D. Holten. Drawing Binary
Tanglegrams: An Experimental Evaluation. In Proc. of the Workshop on
Algorithm Engineering and Experiments, ALENEX 2009, pages 106-119,
SIAM, 2009.

[6] F. Rendl, G. Rinaldi, and A. Wiegele. A Branch and Bound Algorithm for
Max-Cut Based on Combining Semidefinite and Polyhedral Relaxations.
In M. Fischetti and D. P. Williamson, editors, IPCO 2007, volume 4513
of Lecture Notes in Computer Science, pages 295-309. Springer, 2007.

[7] B. Venkatachalam, J. Apple, K. St. John, and D. Gusfield. Untangling
Tanglegrams: Comparing Trees by Their Drawings. Bioinformatics Re-
search and Applications, pages 88–99, 2009.

20

On the convergence of feasibility based

bounds tightening

Pietro Belotti

Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA,
USA

Sonia Cafieri

Dept. Mathématiques et Informatique, ENAC, 7 av. E. Belin, 31055 Toulouse,
France

Jon Lee

Dept. of Mathematical Sciences, IBM T.J. Watson Research Center, PO Box 218,
Yorktown Heights, NY 10598, USA

Leo Liberti ∗

LIX, École Polytechnique, 91128 Palaiseau, France

Key words: spatial Branch-and-Bound, range reduction, lattice, fixed point,
MINLP, global optimization, constraint programming.

1 Introduction

Global Optimization and Mixed-Integer Nonlinear Programming problems
such as min{f(x) | gL ≤ g(x) ≤ gU ∧ xL ≤ x ≤ xU ∧ ∀j ∈ Z (xj ∈ Z)}, where
f : Rn → R, g : Rn → Rm, gL, gU ∈ Rm, xL, x, xU ∈ Rn and Z ⊆ {1, . . . , n},

⋆ Financial support by grants System@tic “EDONA”, ANR 07-JCJC-0151 “Ars”,
ANR 08-SEGI-023 “Asopt”, Digiteo Emergence “Paso” is gratefully acknowledged.
∗ Corresponding author.

Email addresses: belotti@lehigh.edu (Pietro Belotti),
sonia.cafieri@enac.fr (Sonia Cafieri), jonlee@us.ibm.com (Jon Lee),
liberti@lix.polytechnique.fr (Leo Liberti).

CTW2010, University of Cologne, Germany. May 25-27, 2010

are usually solved to ε-guaranteed approximation by the spatial Branch-and-
Bound (sBB) algorithm [2], a variant of the usual Branch-and-Bound for deal-
ing with nonlinear, possibly nonconvex f, g. Since the gap between the original
problem P and its convex relaxation P̄ is due both to integral variable restric-
tions being lifted as well as nonconvex functions being replaced by a convex
relaxation, sBB is able to branch at continuous variables as well as integer
ones. If x̄ solves P̄ , the standard disjunction used at a node in the sBB search
tree is xj ≤ x̄j ∨xj ≥ x̄j , the more usual one xj ≤ ⌊x̄j⌋∨xj ≥ ⌈x̄j⌉ being used
only if j ∈ Z.

At any sBB node, it is important to make sure that the variable ranges xL ≤
x ≤ xU for that node are as tight as the constraint restrictions gL ≤ g(x) ≤ gU

allow. Letting F(P) be the feasible region of P , we would wish to replace
X0 = [xL, xU] with X̃ = [x̃L, x̃U] such that x̃L

i = minx∈F(P) xi and x̃U
i =

maxx∈F(P) xi for all i ≤ n. Since these 2n problems are as hard as P , we relax
these requirements. There are two standards relaxations: Optimization Based
Bounds Tightening (OBBT) [3,2] and Feasibility Based Bounds Tightening
(FBBT) [1,2]. The former consists in replacing F(P) with F(P̄). The latter,
whose convergence properties are the object of this paper, is also known in
Constraints Programming as a range reduction device. FBBT relies on interval
arithmetic to derive the constraint ranges Ḡ = [ḡL, ḡU] implied by the variable
ranges X0 at a given sBB node; if Ḡ) G0 = [gL, gU], FBBT uses inverse
interval arithmetic to propagate G0 back to tightened variable ranges X ′. This
basic FBBT step is iterated until convergence, generating an interval sequence
X0, X1, Since OBBT is usually slower than FBBT, OBBT is only applied
at the root sBB node and FBBT is applied at each node. Furthermore, to
simplify inverse interval arithmetic, FBBT often only considers a subset of
linear constraints in g. We shall therefore make the assumption — without
excessive loss of generality — that the symbol g denotes the linear constraints
of P , which we denote as gL ≤ Ax ≤ gU for some m× n matrix A.

The main trouble with FBBT is that its worst-case running time is infi-
nite in the size of its input (m,n,X0, A,G0). For example, on the instance

(2, 2, ([0, 1], [0, 1]), (a −1
1 −a), ([0, 0], [0, 0])), FBBT yields the infinite interval se-

quence ([0, 1/a2k−1], [0, 1/a2k]) whenever a > 1. Enforcing finite convergence
by terminating at the first iteration k such that L (Xk−1△Xk) ≤ ε, where
ε > 0 is given and L is the Lebesgue measure in R, yields a finite but un-
bounded worst-case time complexity: given a fixed iteration bound K there
are always instances where the FBBT takes longer than K iterations to reach
the ε termination condition (it suffices to decrease the value a appropriately).
In practice, such occurrences are far from rare, specially when the coefficients
of Ax are obtained by previous floating point operations, which might cause
a small but positive |ai − aj | even if ai, aj are supposed to be equal.

22

In this paper we propose a new method for finding the limit point of the FBBT
sequence in polynomial time, based solving a Linear Program (LP) modelling
the greatest fixed point of the FBBT in the interval lattice.

2 Fixed points in the interval lattice

A lattice is a set Λ partially ordered by the relation ⊑ endowed with two
operations ⊔ (join), ⊓ (meet) such that x ⊑ x ⊔ y, y ⊑ x ⊔ y and x ⊓ y ⊑ x,
x ⊓ y ⊑ y. A lattice is complete if there exist elements ⊥,⊤ such that ⊥ ⊑
x ⊑ ⊤ for all x ∈ Λ. An operator F : Λ → Λ is monotone if x ⊑ y implies
F (x) ⊑ f(y) and deflationary if F (x) ⊑ x for all x ∈ Λ. The set of all real
intervals forms a lattice I under set inclusion ⊆, with set intersection ∩ as
meet and interval union (smallest interval including two intervals) ∪ as join.
The lattice structure is extended to arrays of intervals in the standard way. In
the rest of the paper, we let X be the interval vector (X1, . . . , Xn) ∈ I n and
G = (G1, . . . , Gm) ∈ I m.

FBBT consists of two phases: upwards and downwards propagation. We define
up : I n → I m and down : I m → I n as:

up(X)= (G0
i ∩

∑

j≤n

aijXj | i ≤ m) (1)

down(G)=
⋂

i≤m

(Xj ∩
1

aij
(Gi −

∑

ℓ 6=j

aiℓXℓ) | j ≤ n), (2)

where all arithmetic operators have interval semantics [5]. We now define the
FBBT iteration as an operator fbbt : I n → I n by fbbt(X) = down(up(X ∩
X0)) (we remark that our definition of fbbt depends on the initial interval
vector X0). Because all linear interval arithmetic and lattice operators are
monotone [5] and the composition of monotone operators is monotone [6],
fbbt is a monotone operator. Furthermore, because of the intersections, inter-
vals are changed only if the up and down actions make them smaller. Again,
the composition of deflationary operators is deflationary [6]: hence fbbt is
deflationary. By applying Thm. 12.9 in [6] to the dual lattice obtained by
inverting ⊤ and ⊥, ⊑ and ⊒, meet and join, we have that the sequence
(fbbtk(X) | k ≥ 0) converges to the greatest fixed point (gfp) of fbbt, i.e. the
largest (in the lattice order) interval vector X such that fbbt(X) = X. In other
words gfp(fbbt) = sup{X | X = fbbt(X)}. By Tarski’s Fixed Point Theorem
[7], equality can be replaced with ⊆. Furthermore, the operator | · | : I n → R
given by |X| = ∑

j≤n(x
U
j − xL

j) is monotone with the lattice order; since the
lattice is complete, we obtain:

gfp(fbbt) = argmax{|X| | X ⊆ fbbt(X)}, (3)

which we state as the following “interval linear problem” with parameters

23

(m,n,X0, A,G0) and interval decision variable arrays X,G:

max{|X| | X ⊆ X0 ∧G ⊆ up(X) ∧X ⊆ down(G)}, (4)

It is possible to write an ordinary LP whose optimal solution is the same as
(4).

3 Computational validation

By way of preliminary computational validation of our approach, we solved
four significant instances using CPLEX 11.0 [4] on an Intel Core 2 Duo 1.4GHz
with 3GB RAM running Linux. For each instance we record the gfp, the
seconds of user CPU time to solution with either method, the absolute error
E =

∑
j≤n L (X∗△gfp(fbbt)) whereX∗ is the output of either method (εFBBT =

10−6), and the relative error R of the FBBT obtained by letting it run only
for as long as the LP method takes to converge to the (precise) gfp’s.

Instance
x1 − 1.01x2 = 0
−1.01x1 +x2 = 0
x1, x2 ∈ [−1, 1]

x1 − 1.01x2 = 1
−1.01x1+x2 = −1.01
x1, x2 ∈ [−1, 1]

x1 − 1.01x2 = 0
−1.01x1 + x2 = 0
x3 + 100x1 ≥ −100
x1, x2 ∈ [−1, 1], x3 ∈ [−10, 1]

x1 − 1.01x2 = −1.01
−1.01x1 + x2 = 1
x3 + 100x1 ≥ −100
x1, x2 ∈ [−1, 1], x3 ∈ [−10, 1]

gfp ([0,0],[0,0]) ([1,1],[0,0]) ([0,0],[0,0],[-10,0]) ([0,0],[1,1],[-10,0])

CPUFBBT 0.04 0.04 0.06 0.06

CPULP 0 0 0.004 0.004

EFBBT 1e-4 5e-5 1.5e-6 5e-5

ELP 0 0 0 0

RFBBT 2.29 1.47 2.33 1.21

References

[1] D.E. Andersen and K.D. Andersen. Presolving in linear programming.
Mathematical Programming, 71:221–245, 1995.

[2] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4):597–634, 2009.

[3] A. Caprara and M. Locatelli. Global optimization problems and domain
reduction strategies. Mathematical Programming, to appear.

[4] ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2008.

[5] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, 2009.

[6] S. Roman. Lattices and Ordered Sets. Springer, New York, 2008.

[7] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

24

Branch-and-price for the multi-depot pickup

and delivery problem with heterogeneous fleet

and soft time windows

Andrea Bettinelli, Alberto Ceselli, Giovanni Righini

Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
via Bramante 65, 26013 Crema, Italy

Key words: branch-and-price, pickup and delivery, soft time windows

1 Introduction

The multi-depot pickup and delivery problem with heterogeneous fleet and
soft time windows (MDPDPHSTW) requires to find a minimum cost routing
for a fleet vehicles with different capacities and based at different depots,
satisfying a given set of customers. A customer request is associated with
two locations: a source where a certain demand must be picked up and a
destination where this demand must be delivered. Each route must satisfy
pairing constraints (pickup and delivery of a customer must both be visited
in the same route) and precedence constraints (the delivery location must
be visited after the corresponding pickup location). Further, each pickup and
delivery location has a time window for the service that can be violated at
the cost of a linear penalty. This problem has application in various scenarios,
such as urban courier services, less-than-truckload transportation, door to door
transportation services.

The problem has been widely studied in the version with hard time windows
constraints (PDPTW). Several exact approaches based on branch-and-cut [1,8]
and branch-and-price [3,10,7] have been proposed. For comprehensive reviews
on routing problems involving pickup and delivery, the reader is referred to
the works of Savelsberg and Sol [9], Cordeau et al. [2] and Parragh et al. [5].
The soft time windows case was address in an early work by Sexton and Choi
[11]. They developed a heuristic algorithm based on Benders’ decomposition.

Email address: {name.surname}@unimi.it (Andrea Bettinelli, Alberto Ceselli,
Giovanni Righini).

CTW2010, University of Cologne, Germany. May 25-27, 2010

Recently, Liberatore et al. [4] and Qureshi et al. [6] proposed branch-and-
price approaches for the vehicle routing problem with soft and semi-soft time
windows.

In this work we propose a branch-and-price algorithm for the MDPDPHSTW
which combines ideas proposed in [7] with bidirectional label extension and
decremental state space relaxation, and uses a modified version of the algo-
rithm developed by Liberatore et al. [4] to handle soft time windows.

2 Problem description

Given a set K of vehicle types, a set H of depots and a set N of customer
requests, the problem can be defined on a directed graph G = (V,A), where
V contains a vertex for each depot h ∈ H and for the pickup and delivery
locations of each customer i ∈ N . Non negative weights dij and tij are associ-
ated with each arc (i, j) ∈ A; they represent the transportation cost and the
traveling time respectively. A service time sj and a time window [aj, bj] are
associated to each vertex j ∈ V ; if the service at location j starts inside its
time window no penalty is incurred, otherwise a linear penalty, proportional
to the anticipation or delay through non-negative coefficients αj and βj re-
spectively, has to be paid. If we call Tj the starting time of service at location
j, the penalty term π(Tj) is defined as follows:

π(Tj) =





αj(aj − Tj) if Tj < aj

0 if aj ≤ Tj ≤ bj

βj(Tj − bj) if Tj > bj.

Each vehicle type k ∈ K has given capacity wk and fixed cost fk. A limited
number of vehicles is available: at most uhk vehicles of type k ∈ K can be
based at depot h ∈ H.

The objective is to minimize the sum of vehicles fixed costs and routing costs
(including penalties), satisfying the following conditions: (a) all customers is
served, (b) each customer is visited by only one vehicle, (c) each route begins at
a depot and ends at the same depot, (d) the capacity of the associated vehicle
is not exceeded, (e) pickup and delivery of a customer are performed in the
same route, (f) the pickup vertices are visited earlier than the corresponding
delivery vertices, (g) the number of available vehicles of each type for each
depot is not exceeded.

26

3 Formulation

We consider a set covering formulation of the MDPDPHSTW. We say that a
route is feasible if it satisfies conditions (b), (c), (d), (e) and (f). Let Ωhk be
the set of all feasible routes using a vehicle of type k ∈ K from depot h ∈ H.
We associate a binary variable xr with each feasible route, which takes value
1 if and only if route r is selected. Let air be a binary coefficient with value
1 if and only if customer i is visited by route r. Let cr be the cost of route r;
it is equal to the sum of the vehicle fixed cost fk and the routing costs. With
these definitions we obtain the following integer linear programming model:

min
∑

h∈H

∑

k∈K

∑

r∈Ωhk

crzr (1)

s.t.
∑

h∈H

∑

k∈K

∑

r∈Ωhk

airzr ≥ 1 ∀i ∈ N (2)

∑

r∈Ωhk

zr ≤ uhk ∀h ∈ H, k ∈ K (3)

zr ∈ {0, 1} ∀h ∈ H, k ∈ K, r ∈ Ωhk (4)

Constraints (2) are standard set covering constraints, modeling condition (a),
while (3) impose limits on the maximum number of available vehicles of each
type at each depot, modeling condition (g). The objective is to minimize the
overall cost of the selected routes. In the remainder we indicate this formula-
tion as Master Problem (MP).

4 Branch-and-price

We solve the linear relaxation of the MP to obtain a lower bound which is
used in a tree search algorithm. The number of variables is exponential in the
cardinality of the customer set N , thus we use a column generation approach.

Given a depot h and a vehicle type k, the problem of finding the most negative
reduced cost column encoding a route for vehicle k using depot h turns out to
be a Resource Constrained Elementary Shortest Path Problem (RCESPP). We
solve it by using a dynamic programming algorithm whose structure is similar
to the one proposed in [7], enriched with bidirectional label propagation and
decremental state space relaxation techniques. Further, we need to deal with
soft time windows. For this purpose we modify the algorithm proposed by
Liberatore et al. [4] for the VRPSTW. The key idea is to store the cost of a
path as a convex piecewise linear function of the time and to perform partial
dominance on time intervals. In principle it would be necessary to solve, at
each iteration, an instance of RCESPP for every combination of depot and

27

vehicle type, but in practice it is possible to avoid multiple executions. Two
branching rules are used, one on the number of vehicles and the other one on
the arcs used.

References

[1] J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem.
Operations Research, 54:573–586, 2006.

[2] J.-F. Cordeau, G. Laporte, and S. Ropke. Recent models and algorithms for
one-to-one pickup and delivery problems. In B. L. Golden, S. Raghavan, and
E.A. Wasil, editors, Vehicle Routing: Latest Advances and Challenges, pages
327–357. Springer, 2008.

[3] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with
time windows. European Journal of Operational Research, 54:7–22, 1991.

[4] F. Liberatore, M. Salani, and G. Righini. A pricing algorithm for the vehicle
routing problem with soft time windows. In L. Bertazzi, M.G. Speranza, and
J.A.E.E. van Nunen, editors, Proceedings of the International Workshop on
Distribution Logistics, Brescia, 2006, volume 619 of LNEMS, pages 251–266,
2009.

[5] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery
problems: Part ii: Transportation between pickup and delivery locations.
Journal fr Betriebswirtschaft, 58, 2008.

[6] A.G. Qureshi, E. Taniguchi, and T. Yamada. An exact solution approach for
vehicle routing and scheduling problems with soft time windows. Transportation
Research Part E: Logistics and Transportation Review, 45:960–977, 2009.

[7] S. Ropke and J.F. Cordeau. Branch and cut and price for the pickup and
delivery problem with time windows. TRANSPORTATION SCIENCE, 43:267–
286, 2009.

[8] S. Ropke, J.F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms
for pickup and delivery problems with time windows. Networks, 49:258–272,
2007.

[9] M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29:17–29, 1995.

[10] M.W.P. Savelsbergh and M. Sol. Drive: Dynamic routing of independent
vehicles. Oper. Res., 29:474–490, 1998.

[11] T.R. Sexton and Y.M. Choi. Pickup and delivery of partial loads with soft
time windows. American Journal of Mathematical and Management Sciences,
6:369–398, 1986.

28

Bisimplicial Edges in Bipartite Graphs ⋆

Matthijs Bomhoff ∗ Bodo Manthey

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Bisimplicial edges in bipartite graphs are closely related to pivots in Gaussian elim-
ination that avoid turning zeroes into non-zeroes. We present a new deterministic
algorithm to find such edges in bipartite graphs. The expected time complexity of
our new algorithm is O

(
n2 log n

)
on random bipartite graphs in which each edge

is present with a fixed probability p, a polynomial improvement over the fastest
algorithm found in the existing literature.

Key words: bipartite graphs, random graphs, algorithms, Gaussian elimination

1 Introduction

When applying Gaussian elimination to a square n× n matrix M containing
some elements with value zero, the choice of pivots can often determine the
amount of zeroes turned into non-zeroes during the process, the so called fill-in.
Some matrices even allow Gaussian elimination without any fill-in. Avoiding
fill-in has the nice property of bounding the required space for intermediate
results of the Gaussian elimination to the space required for storing the input
matrix M . This can be important for processing very large sparse matrices.
Even when fill-in cannot be completely avoided, it may still be worthwhile
to avoid it for several iterations, motivating the search for pivots that avoid
fill-in.

⋆ This work was supported by the Dutch Innovation Oriented Research Program
“Integral Product Creation and Realisation (IOP-IPCR)” of the Dutch Ministry of
Economic Affairs.
∗ Corresponding Author

Email addresses: m.j.bomhoff@utwente.nl (Matthijs Bomhoff),
b.manthey@utwente.nl (Bodo Manthey).

CTW2010, University of Cologne, Germany. May 25-27, 2010

If we assume subtracting a multiple of one row of M from another turns
at most one non-zero into a zero, we may restrict ourselves to considering
only {0, 1} matrices. Given such a square matrix M , we can construct the
bipartite graph G[M] with vertices corresponding to the rows and columns
in M , where vertices i and j are adjacent if and only if Mi,j is nonzero. The
{0, 1} matrices that allow Gaussian elimination without fill-in correspond to
the class of perfect elimination bipartite graphs [1]. Central to the recognition
of this class of graphs is the notion of a bisimplicial edge that corresponds
to an element of M that can be used as a pivot without causing fill-in. The
fastest algorithm for finding bisimplicial edges in the existing literature has a
time complexity equal to that of matrix multiplication [2,3], i.e., O (n2.376) [4].
We present a new deterministic algorithm for finding a bisimplicial edge in a
bipartite graph, if one exists, and show that its expected time complexity on
random bipartite graphs where each edge is present with some fixed probability
p is O (n2 logn).

2 Bisimplicial Edges

We denote by Γ (u) the neighbors of a vertex u.

Definition 1 An edge uv of a bipartite graph G = (U, V, E) is called bisim-
plicial, if the induced subgraph G[Γ (u) ∪ Γ (v)] is a complete bipartite graph.

Clearly, for a given edge uv we can determine in O (|E|) time if it is a bisim-
plicial edge by simply checking all edges adjacent to it. So a simple algorithm
to find a bisimplicial edge in a bipartite graph G, if one exists, takes O (|E|2)
time.

Goh and Rotem [2] present a faster algorithm based on the following: A row
Ma,∗ is said to majorize a row Mb,∗ if for each 1 ≤ j ≤ n we have Ma,j ≥ Mb,j .
According to this definition, every row majorizes itself.

Theorem 2 (Goh and Rotem [2]) Let M be an n × n {0, 1} matrix rep-
resenting a bipartite graph G = (U, V, E). Let ℓi be the number of rows in M
that majorize row i and let sj be the sum of the entries in column j of M .
Then Mi,j = 1 and ℓi = sj if and only if the edge uivj is a bisimplicial edge
of G.

Let Q = MMT , this implies ℓi is equal to the number of elements in the row
Qi,∗ that are equal to Qi,i (including Qi,i itself). Clearly, the time complexity
of finding a bisimplicial edge in G[M] is bounded by the time complexity of
the matrix multiplication. The fastest currently known algorithm for this has
a time complexity of O (n2.376) [4].

30

To improve on this, our new approach first selects a set of candidate edges.
If a bisimplicial edge exists, then one of our candidates is bisimplicial. Thus
we can restrict ourselves to checking the candidate edges for bisimpliciality.
By bounding the number of candidates we achieve an improved expected time
complexity. The following observation is the basis of our candidate selection
procedure.

Lemma 3 If an edge uv of a bipartite graph G = (U, V, E) is bisimplicial, we
must have δ (u) = minu′∈Γ(v) δ (u

′) and δ (v) = minv′∈Γ(u) δ (v
′).

Translated to the matrixM , this means that ifMi,j = 1, it can only correspond
to a bisimplicial edge if row i has a minimal number of ones over all the rows
that have a 1 in column j and column j has a minimal number of ones over all
the columns having a 1 in row i. In what follows, we will call the row (column)
in M with the minimal number of ones over all the rows (columns) in M the
smallest row (column). Using this observation, we construct an algorithm to
pick candidate edges that may be bisimplicial:

Algorithm 1 (1) Determine the row and column sums (ai and bj) for each
row and column of M .

(2) Determine for each row i the index ci of the smallest column with Mi,ci =
1 (breaking ties by favoring the lowest index); or ci = 0 if row i has no
one.

(3) Determine for each column j the index rj of the smallest row with Mrj ,j =
1 (breaking ties by favoring the lowest index); or rj = 0 if column j has
no one.

(4) Mark Mi,j as a candidate edge if ci = j and rj = i.

Clearly, all steps in the algorithm can be performed in O (n2) time. Further-
more, the last step will mark at most n candidate edges (and at least 1).

Theorem 4 If G = (U, V, E) contains a bisimplicial edge, at least one of the
candidates marked by the algorithm will be bisimplicial.

As each of the candidates can subsequently be checked for bisimpliciality in
O (n2), we obtain a O (n3) algorithm that finds a single bisimplicial edge in a
bipartite graph G, if one exists, without using matrix multiplication. By itself,
this is not really interesting, as the worst case time complexity is not an im-
provement over previously known algorithms. However, for random bipartite
graphs, our new algorithm performs significantly better.

31

3 Asymptotic Expected Behavior on Random Graphs

For a fixed value of p ∈ (0, 1), we consider random bipartite graphs from the
Gn,n,p model: i.e., we have n vertices in each vertex class, and each edge is
present with probability p. Such a random graph corresponds to a stochastic
n × n {0, 1} matrix M with P [Mi,j = 1] = p. We denote by random variable
Xi the {0, 1} vector that forms row i of M and use |Xi| to denote the sum of
its elements. If we order the Xi vectors according to the number of ones they
contain (breaking ties by favoring lower values of i), we denote by X(1) the
row with the least number of ones, by X(2) the row with the second-to-least
number etc.

Lemma 5 For any ε > 0 and sufficiently large n, we have

P
[
|X(1)| < (1− ε)pn

]
≤ 1

n
.

Lemma 6 For any p′, k with 0 < p′ < p and k ≥ 1 and sufficiently large n,
we have

P [Algorithm 1 selects more than k candidates] ≤ n(1− p′)k +
1

n
.

From this, we immediately get a bound on the expected number of candidates
that our algorithm selects.

Theorem 7 For any p′ with 0 < p′ < p and sufficiently large n, we have

E [number of candidates selected by Algorithm 1] ≤ 2 + 2 log(1−p′)
1

n
.

Corollary 8 For any fixed p, the expected time complexity of finding a bisim-
plicial edge or deciding there is none using Algorithm 1 is O (n2 log n).

References

[1] Martin Charles Golumbic and Clinton F. Goss. Perfect elimination and chordal
bipartite graphs. J. Graph Theory, 2(2):155–163, 1978.

[2] L. Goh and D. Rotem. Recognition of perfect elimination bipartite graphs.
Inform. Process. Lett., 15(4):179–182, 1982.

[3] Jeremy P. Spinrad. Recognizing quasi-triangulated graphs. Discrete Appl.
Math., 138(1-2):203–213, 2004.

[4] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3):251–280, 1990.

32

A Heuristic Algorithm for the Train-Unit

Assignment Problem

V. Cacchiani ∗ A. Caprara P. Toth

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Key words: Train Unit Assignment, Lagrangian relaxation, Heuristic, Assignment
Problem

1 The Train-Unit Assignment Problem

We study the Train-Unit Assignment Problem (TUAP) (see e.g. [2]), calling
for an optimal assignment of train units (which are self-contained trains with
an engine and passenger seats) to a given set of timetabled train trips. More
precisely, each trip has a departure station, an arrival station, a departure time
and an arrival time, and requires a number of passenger seats. Train units can
be classified in different types: each train unit has a number of available seats
and can be combined with other units in order to fulfill the seat requests. For
each train trip a maximum number of train units that can be combined is
given. In addition, sequencing constraints between trips must be satisfied: a
pair of trips can be in a sequence for a train unit if the time elapsing between
the arrival of the first one and the departure of the second one is large enough
to allow the corresponding train unit to travel from the arrival station of the
first one to the departure station of the second one. Finally, each train unit has
to undergo a maintenance operation every fixed number of days, which requires
a certain amount of time, as well as the transfer to and from the maintenance
station. The goal is to minimize the number of train units globally used, while
satisfying the seat requests, the sequencing constraints and the maintenance
constraints.

∗ V. Cacchiani
Email addresses: valentina.cacchiani@unibo.it (V. Cacchiani),

alberto.caprara@unibo.it (A. Caprara), paolo.toth@unibo.it (P. Toth).

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Solution method

Let n be the number of trips and p the number of train unit types. Each trip
j ∈ {1, . . . , n} is defined by a request rj , given by the required number of
passenger seats, a maximum number uj of train units that can be assigned
to the trip, and its timetable. Each train unit type k ∈ {1, . . . , p} is defined
by a number dk of available train units and an associated capacity sk, given
by the number of available seats. We consider the natural and well-known
Integer Linear Programming (ILP) with arc variables, based on a canonical
graph representation of the problem (see e.g. [1]). Let G = (V,A) be a directed
acyclic multigraph, in which nodes correspond to trips, and the arc set A is
partitioned into p subsets A1, . . . , Ap, where Ak is associated with train units
of type k. The sequencing constraints are implicitly represented by the graph.
In particular, arc (i, j)k exists whenever the time between the arrival of trip
i and the departure of trip j allows a train unit of type k to travel from the
arrival station of trip i to the departure station of trip j. Let us introduce
an integer variable xk

ij (k ∈ {1, . . . , p}, i, j ∈ {1, . . . , n}), that indicates the
number of times that arc (i, j)k is selected in the solution, i.e., the number
of train units of type k that execute trip i before trip j in the associated
sequence. Moreover, let ckij denote the cost of arc (i, j)k, corresponding to the
time in minutes elapsing between the departure of the starting node and the
departure of the ending node. The ILP reads as follows:

min
p∑

k=1

n∑

i=1

n∑

j=1

ckijx
k
ij , (1)

n∑

i=1

xk
ij =

n∑

i=1

xk
ji, k ∈ {1, . . . , p}, j ∈ {1, . . . , n}, (2)

n∑

i=1

n∑

j=1

ckijx
k
ij ≤ 1440 dk, k ∈ {1, . . . , p}, (3)

p∑

k=1

n∑

i=1

skxk
ij ≥ rj, j ∈ {1, . . . , n}, (4)

p∑

k=1

n∑

i=1

xk
ij ≤ uj, j ∈ {1, . . . , n}, (5)

xk
ij ≥ 0, integer , k ∈ {1, . . . , p}, i, j ∈ {1, . . . , n}. (6)

The objective is to minimize the overall cost of the selected arcs, equal to 1440
(the number of minutes in a day) times the number of the train units globally
used. Constraints (2) express the flow conservation. Constraints (3) forbid to
use more than the available train units for each type. Constraints (4) impose
to cover each trip with the corresponding seat request. Constraints (5) impose
a bound on the number of train units that can be used to cover each trip.

34

Note that the maintenance constraints are not introduced in the formulation,
since they would be complex to model; we take them into account directly in
the heuristic algorithm.

The approach in [1], based on solving LP relaxations by general-purpose LP
software, considers an alternative equivalent ILP formulation with path vari-
ables, whose LP relaxation is much faster to solve (modulo using column gen-
eration). In this work, we consider a Lagrangian-relaxation based approach,
which nicely combines with the ILP above. Specifically, we first replace con-
straints (5) by the weaker

n∑

i=1

xk
ij ≤ uj , k ∈ {1, . . . , p}, j ∈ {1, . . . , n}, (7)

which impose that each train unit of type k can cover each trip j at most
uj times. Then, we relax in a Lagrangian way constraints (3) and (4), by
using nonnegative Lagrangian multipliers λj , (j ∈ {1, . . . , n}) and σk, (k ∈
{1, . . . , p}), respectively.

The resulting Lagrangian relaxed problem decomposes onto p independent
subproblems, one for each train unit type. Let c̃kij := (ckij−λjs

k+σkc
k
ij) be the

Lagrangian cost for each arc (i, j)k ∈ A. We impose a null Lagrangian cost
(c̃kii := 0) for loops (i, i)k for each vertex i ∈ V (that had originally infinity
cost). Thus, the subproblem associated with a train unit type k calls for the
minimization of

∑n
i=1

∑n
j=1 c̃

k
ijx

k
ij subject to (2) and (7). Moreover, the pres-

ence of zero-cost loops allows us to replace inequality by equality in (7). It is
well known that all vertices of the feasible region of this subproblem are inte-
ger for uj integer and the associated constraint matrix is totally unimodular.
Moreover, in the particular case, arising in our case study, in which uj does not
depend on j, we can replace uj with u for k ∈ {1, . . . , p} and j ∈ {1, . . . , n}.
This makes the subproblem equivalent to an Assignment Problem (AP), ob-
tained by replacing u by 1 in (7), the correspondence between solutions x̄
of the subproblem and ȳ of AP being given by x̄ = uȳ. As is well known,
the assignment problem can be solved in O(n3) time. In order to find good
Lagrangian multipliers we apply a standard iterative subgradient procedure.

Besides yielding a valid lower bound on the optimal solution value, the best
Lagrangian multipliers λ∗, σ∗ found throughout the iterations and the corre-
sponding reduced costs c̄kij := ckij −λ∗

js
k+σ∗

kc
k
ij − w̄k

i − v̄kj , where w̄
k and v̄k are

the optimal AP dual variables associated with the assignment constraints, are
used to drive the following constructive Lagrangian heuristic algorithm. We
order the train unit types for decreasing capacity values, and construct the
workload for each train unit, until either all the trips have been covered or all
the train units have been used (in this case, we apply a local search procedure
to obtain a feasible solution). The construction starts with the selection of

35

a trip whose departure is in the beginning of the day. Then, we choose the
following trips by assigning to each one a score that takes into account the
reduced costs, the original costs and how “well” the current train unit can
cover the trip (taking into account which other train units are still available).
In addition, we give a prize to the arcs that allow to perform maintenance,
until we reach the number of necessary maintenance operations. Every time
a trip is selected in the solution, we update its number of seats and the re-
duced cost of each arc entering the corresponding node. In order to decide
how to end the workload of the current train unit type, for each selected trip
in the workload we solve the relaxed problem on the residual train units and
trips. The solution value of the reduced relaxed problem gives a lower bound
on the global number of train units that are needed to cover all the residual
trips. When no more train units are available of the current type, we end the
workload with the trip giving the smallest solution value.

3 Computational Experiments

We present some preliminary computational experiments on a set of real-world
instances for an operator running trains in a regional area, and compare the
results with the approach presented in [1], with and without imposing the
maintenance constraints. The tests were performed on a PC Pentium 4, 3.2
GHz, 2 GB RAM, and using Cplex 9.0 as an LP-solver in [1]. The results are
presented in Table 1, showing that the proposed approach produces compara-
ble results within much shorter computing time (expressed in seconds).

Lagr. heur. [1] heur. Lagr. heur. maint. [1] heur. maint.

inst. n p value time value time value time value time

1 85 1 2 0 2 0 2 0 2 0

2 120 1 4 0 4 0 4 1 4 5

3 302 1 17 4 17 288 17 5 17 544

4 208 2 26 4 25 17 27 3 25 19

5 364 2 20 18 20 1912 21 20 20 3899

Table 1
Comparison on a set of real-world instances in the case without or with the main-
tenance constraints.

References

[1] Cacchiani, V., Caprara, A., and Toth, P., “Solving a Real-World Train Unit
Assignment Problem”, Mathematical Programming Series B, to appear (2010).

[2] Caprara, A., Kroon, L., Monaci, M., Peeters, M., and Toth, P., “Passenger
Railway Optimization”, in C. Barnhart and G. Laporte (eds.), Handbooks in
OR & MS, Vol. 12, Elsevier Science (2006).

36

Optimization algorithms for the Max Edge

Weighted Clique problem with Multiple

Choice constraints

Alberto Ceselli a,∗ Roberto Cordone a Yari Melzani a

Giovanni Righini a

aDipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano
{alberto.ceselli,roberto.cordone,giovanni.righini}@unimi.it,

yari.melzani@gmail.com

Key words: Max Clique, semidefinite programming, tabu search,
branch-and-bound

1 Introduction

Many relevant problems can be described and successfully solved using graph-
based models. For instance, the side-chain placement problem in biology, the
choice of efficient communication protocols in management science, backbone
design in telecommunication networks and data mining applications share a
common structure: they all require to find a maximum weighted clique in a
suitable graph [1].
We tackle the Max Edge Weighted Clique problem with Multiple choice Con-
straints (MEWCMC). Given a graph with weights on both vertices and edges,
and a partition of the vertex set, the MEWCMC asks to find a maximum
weight clique, choosing one vertex for each class of the partition.
The classical Max Weighted Clique problem has been studied from many as-
pects. State of the art algorithms include [3], [4] and [5]. The version of the
problem involving multiple choice constraints, instead, has been tackled only
recently [2].
In this paper we first introduce models for the MEWCMC based on Binary
Quadratic Programming (BQP) and Integer Linear Programming (ILP); we
also introduce a model suitable to obtain a semidefinite relaxation of the
MEWCMC. Since using commercial solvers on these models allows to solve
only small size instances, we present an exact algorithm exploiting a semidefi-
nite relaxation of the MEWCMC, combinatorial bounding, rounding and prob-
lem reduction procedures in a branch-and-bound framework. We also describe
a Tabu Search heuristic, able to quickly find good quality solutions.

∗ Corresponding author

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Models

It is given a graphG(V,E), where V is a set of n vertices and E ⊆ V ×V is a set
of ℓ edges. It is also given a partitionK = {V1, V2, .., Vm} of V . Let wE : E → R
and wV : V → R be two functions mapping respectively every edge and every
vertex to a weight value. The MEWCMC consists in finding a clique in G,
that is finding a set of vertices M ⊆ V , such that (i, j) ∈ E ∀i, j ∈ M , having
maximum weight z(M) = 1

2

∑
vi∈M

∑
vj∈M wij . Furthermore, in order to fulfill

multiple choice constraints, M has to include exactly 1 vertex for each class,
that is |M ∩ Vk| = 1 ∀Vk ∈ K.
By introducing a binary variable xi for each vertex i ∈ V , such that xi takes
value 1 if vertex i ∈ M , 0 otherwise, we can formulate the MEWCMC as the
following BQP problem:

maximize
∑

i∈V

∑

j∈V
wijxixj (1)

s.t.
∑

i∈Vk

xi = 1 ∀k ∈ K (2)

xi ∈ {0, 1} ∀i ∈ V. (3)

Multiple choice constraints (2) impose that exactly one vertex is selected for
each class Vk ∈ K. This model can be either directly used by general purpose
BQP solvers, or linearized using standard techniques, obtaining an ILP prob-
lem, suitable to be optimized by standard solvers. Both approaches, however,
show to fail as the size of instances increases, mainly due to the poor quality
of the continuous relaxation of both models.
Hence, we derive a matrix-based formulation of the problem as follows. First
we define a matrix W , where each element wij with i 6= j is the weight as-
sociated to edge (i, j) ∈ E and each element wii is the weight associated to
vertex i ∈ V , and we introduce a square matrix Y of variables yij of dimension
n, where yij = xixj for each i, j ∈ V . The MEWCMC can then be stated as
follows:

maximize W • Y (4)

s.t. rank(Y) = 1 (5)
∑

k

Sk • Y = 1 k = 1, ..., m (6)

Y � 0 (7)

yij ∈ {0, 1} (8)

where • is the Frobenius matrix product, rank(Y) is the rank of matrix Y , Y �
0 imposes Y to be positive semidefinite, I is the identity matrix of dimension
n. Constraints (5) and (7) guarantee that matrix Y can be represented as the
product xxT , and constraints (8) guarantee that each value in the matrix is
binary. Inequalities (6) represent multiple choice constraints: matrices Sk are

38

built in such a way that

∑

i∈Vk

Yii =
∑

i∈V

∑

j∈V
(Sk)ijYij = Sk • Y = 1 ∀Vk ∈ K,

that is, having value 1 only on some diagonal elements, and value 0 elsewhere.

3 Algorithms

We devised an exact branch-and-bound algorithm exploiting formulation (4)–
(8) and combinatorial arguments. In the remainder we sketch its main com-
ponents.
Dual bounds. By considering model (4)–(8) and relaxing constraints (5) and
(8) we obtain a semidefinite programming problem; this is a special case of
convex optimization problem, that can be solved very efficiently by special
purpose algorithms [6]. The relaxed model obtained in this way is strength-
ened in two ways. First, since one vertex has to be selected from each class of
the partition, m vertices have to be selected overall; therefore, the constraint
I • Y = m can be added to the formulation. Second, we state constraints
in stronger forms, by disaggregating and exploiting some properties of BQP
problems. At the same time, we consider the following value

DBc =
1

2

∑

Vs∈K
max
i∈Vs

{wii +
∑

Vt∈K,t6=s

max
j∈Vt

{ wjj

m− 1
+ wij}}; (9)

and we prove by combinatorial arguments that expression (9) gives a valid
dual bound to the MEWCMC. The best of the two bounds is kept as the final
dual bound.
Primal bounds. At each node of the branch-and-bound tree we try to find
good feasible solutions by (a) rounding the optimal solution of the semidefinite
relaxation (b) correcting the solutions given by the combinatorial bounding
procedure (9). Both methods are able to find good solutions in the early nodes
of the branch-and-bound tree. We also devised a Tabu Search heuristic; it
works as follows. We start from a clique M either corresponding to a known
feasible solution or obtained by selecting a random vertex for each class of the
partition K; at each step we explore the neighborhood given by all solutions
obtained by replacing one the vertices in M by a different vertex of the same
class, moving to the best solution in the neighborhood. We keep two tabu
lists: the first keeps track of vertices recently removed from M , that cannot
be selected again; the second keeps track of vertices recently introduced in
M , that cannot be removed. We stop after a fixed number of steps. Prelimi-
nary experiments shows that by setting the length of the first tabu list to 8,
that of the second tabu list to 1 and the maximum number of steps to 1000,
this heuristic is able to produce optimal solutions on a large set of instances;
besides being useful on its own, this heuristic is used to obtain tight primal
bounds at the root node of the branching tree.

39

Branching. The diagonal elements of Y basically represent how much any
vertex is (fractionally) selected in the semidefinite relaxation solution. There-
fore, when primal and dual bounds do not match, we perform binary branching
by selecting the class Vk having the highest number of these fractional entries;
then we try to partition the vertices of class Vk in two subsets V l

k and V r
k ,

having the most balanced sum of fractional entries. In the left branch and
right branches we respectively forbid to choose in the clique any vertex of the
set V l

k , and any vertex of the set V r
k . We visit the branching tree in a best

bound order.
Performance improving techniques. We improved the performances of
our algorithm by (a) switching to complete enumeration when, due to the
remotion of forbidden vertices, the size of the subproblem gets small enough
(b) performing problem reduction tests, that is trying to fix each vertex to
be part of the solution, computing the combinatorial dual bound on the re-
maining subproblem and removing from the problem such a vertex if the dual
bound computed in this way is worse than the best known primal bound.

4 Experimental results

We implemented our algorithms in C, we used ILOG CPLEX 11.2 as both
ILP and BQP solver, and DSDP5 as semidefinite programming solver. We
performed experiments on two datasets. Dataset S1 is drawn from [2]; it is
composed by 168 instances of four types, having weights on vertices and edges
randomly drawn in different ranges. These instances require the optimization
on graphs with up to 65 vertices. Dataset S2, instead, consists of 165 new in-
stances of three types.The number of vertices of the graphs in these instances
range from 30 to 300. Our experiments ran on a Centrino Core 2 3GHz PC,
equipped with 2GB of RAM, in Linux 32 bit environment. A full description
of Datasets and computational experiments is available online 1 .
Our experimental campaign allowed us to find that (a) the tabu search al-
gorithm is able to find the optimal solution on 79.76% of the instances in
Dataset S1, and on 88.48% of the instances in Dataset S2; (b) the BQP solver
of CPLEX using formulation (1)–(3) is not competitive with other methods
(c) the exact algorithm proposed in [2] is outperformed by both CPLEX and
our algorithm on both datasets (d) using the best of our ILP formulations,
CPLEX could solve only 44% of the instances in Dataset S2 within a time
limit of one hour, while our exact algorithm solved 77% of them; when both
CPLEX and our algorithm terminate within the time limit, our algorithm is
up to three orders of magnitude faster, and when none of them terminates, the
remaining gap between primal and dual bounds for our algorithm is a fraction
of that of CPLEX.

1 http://www.dti.unimi.it/∼ceselli/EWCMC.html

40

References

[1] Y. Melzani (2009) “Mathematical programming algorithms for the Max edge
weighted clique problem with multiple choice constraints”, Master thesis,
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano.

[2] A. Bosio (2005) “A mathematical programming algorithm for the Max edge
weighted clique problem with multiple choice constraints”, Degree thesis,
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano.

[3] B. Alidaee, F. Glover, G. Kochenberger, H. Wang (2007) “Solving the maximum
edge weight clique problem via unconstrained quadratic programming”,
European Journal of Operational Research, 181(1): 592–597.

[4] M. M. Sørensen (2004) “New facets and a branch-and-cut algorithm for the
weighted clique problem”, European Journal of Operational Research, 154(1):
57–70.

[5] M. Hunting, U. Faigle, W. Kern (2001) “A Lagrangian Relaxation Approach
to the Edge-Weighted Clique Problem”, European Journal of Operational
Research, 131

[6] S. J. Benson, Y. Ye (2005) “DSDP5: Software for Semidefinite Programming”,
Technical report, Mathematics and Computer Science Division, Argonne
National Laboratory.

41

hh

42

A branch and bound method

for a clique partitioning problem

Irène Charon, a Olivier Hudry, a

aTélécom ParisTech & CNRS - LTCI UMR5141,
46, rue Barrault, 75634 Paris Cedex 13, France

Key words: Branch and bound, classification, clique partitioning of a graph,
clustering, combinatorial optimization, graphs, Lagrangean relaxation, median
equivalence relation, Régnier’s problem, Zahn’s problem

1 Introduction

We consider here the problem of the approximation of m symmetric relations
defined on a same finite set X into a so-called median equivalence relation
(see below and [1]), with in particular two special cases: the one for which the
m symmetric relations are equivalence relations (Régnier’s problem [4]), and
the one of the approximation of only one symmetric relation (m = 1) by an
equivalence relation (Zahn’s problem [6]). These problems arise for instance
from the field of classification or clustering: in this case, X is a set of entities
(which can be objects, people, projects, propositions, alternatives, and so on)
that we want to gather in subsets of X in such a way that the elements of any
such subset can be considered as similar while the objects of different subsets
can be considered as dissimilar. Each symmetric relation is associated with a
criterion specifying, for any pair {x, y} of entities, whether x and y are similar
or not. Then we try to find the best compromise between all these criteria. This
leads us, in Section 2, to state this problem as a graph theoretical problem,
that we call CPP for clique partitioning problem. As this problem is NP-hard,
we design in Section 3 a branch and bound algorithm to solve this problem,
based on a Lagrangean relaxation method for the evaluation function.

2 The clique partitioning problem

The problem that we consider here can be mathematically described as follows.
We are given a collection Π = (S1, S2, ..., Sm) of m symmetric binary relations

CTW2010, University of Cologne, Germany. May 25-27, 2010

Sk, 1 ≤ k ≤ m, all defined on a same finite set X of n elements (Régnier’s
problem [4] corresponds to the case for which all the relations Sk are equi-
valence relations; Zahn’s problem [6] corresponds to the case for which m is
equal to 1). We consider the number δ(R, S) of disagreements between two
binary relations R and S:

δ(R, S) = |{(i, j) ∈ X2 with [iRj and not iSj] or [iSj and not iRj]}|.

Then, for any equivalence relation E, we consider the remoteness ∆(Π, E) =∑m
k=1 δ(Sk, E), measuring the total number of disagreements between Π and

E. Our problem thus consists in computing an equivalence relation E∗, called
a median equivalence relation of Π, which minimizes ∆ over the set E of all
the equivalence relations defined on X:

∆(Π, E∗) = min
E∈E

∆(Π, E).

The computation of E∗ is NP-hard [5], and remains so even for Régnier’s
problem or for Zahn’s problem.

To state this problem as a 0-1 linear programming problem, let sk = (skij)(i,j)∈X2

(1 ≤ k ≤ m) be the binary vector defined by: skij = 1 if iSkj (i.e. if i and j are
put together by Sk), and skij = 0 otherwise. Similarly, let (xij)(i,j)∈X2 denote
the vector associated with E: xij = 1 if iEj, xij = 0 otherwise. It is easy to
obtain the following:

δ(Sk, E) =
∑

(i,j)∈X2

|skij − xij | =
∑

(i,j)∈X2

(skij − xij)
2 =

∑

(i,j)∈X2

(skij + (1− 2skij)xij)

because of the binary property of the quantities skij and xij . Then we obtain,
for the remoteness:

∆(Π, E) =
m∑

k=1

∑

(i,j)∈X2

skij +
m∑

k=1

∑

(i,j)∈X2

(1− 2skij)xij = C +
∑

(i,j)∈X2

wijxij

where C =
∑m

k=1

∑
(i,j)∈X2 skij is a constant and with, for (i, j) ∈ X2:

wij =
m∑

k=1

(1− 2skij) = m− 2|{k with 1 ≤ k ≤ m and iSkj}|.

So, minimizing ∆(Π, E) is the same as minimizing
∑

(i,j)∈X2 wijxij . Moreover,
the constraints to state that E must belong to E are the following:

• symmetry: ∀(i, j) ∈ X2, xij = xji;
• transitivity: ∀(i, j, h) ∈ X3 with i 6= j 6= h 6= i, xij + xjh − xih ≤ 1.

If we add the binary constraints: ∀(i, j) ∈ X2, xij ∈ {0, 1}, we obtain our 0-1
linear programming problem.

44

We now may state this problem as a graph theoretic one. For this, we associate
the complete graph Kn to Π, and we weight every edge {i, j} of Kn by wij .
Then the variables xij equal to 1 define cliques (i.e. complete subgraphs) ofKn,
and the value of ∆(Π, E) is equal to the sum of the weights of the edges with
both extremities inside a same clique. Hence our clique partitioning problem
CPP. Note that the weights of the edges can be non-positive or non-negative
integers. Moreover, the number of cliques into which we want to partition Kn

is not given. Finally, CPP can be stated as follows: given a complete graph
Kn = (X,A) whose edges {i, j} are weighted by non-positive or non-negative
integers wij, partition X into p subsets X1, X2, ..., Xp, where p is not given,
so that

∑p
h=1

∑
(i,j)∈(Xh)2 wij (i.e. the sum of the weights of the edges inside the

cliques) is minimum.

3 The branch and bound method

To solve CPP, we design a branch and bound method BB. We briefly depict
the main ingredients of BB.

The initial bound is provided by a metaheuristic, namely the noising methods
[2], [3]. The noising methods usually compute very good solutions, quite often
optimal, though we cannot know whether these solutions are indeed optimal.

The BB-tree is built as follows. The vertices vi of Kn are integers belonging
to {1, 2, ..., n}. A partition with p subsets X1, X2, ..., Xp is represented as:

v1, v2, ..., vq1︸ ︷︷ ︸
X1

| vq1+1, vq1+2, ..., vq2︸ ︷︷ ︸
X2

|...| vqp−1+1, vqp−1+2, ..., vqp︸ ︷︷ ︸
Xp

With such an encoding, a partition admits several representations. To avoid
this, we suppose that the vertices are ordered by increasing value within a
subset and subsets are ordered according to their smallest vertices; with the
above notation, it means that we have: 1 = v1 < v2 < ... < vq1, vq1+1 < vq1+2 <
... < vq2, ..., vqp−1+1 < vqp−1+2 < ... < vqp, and v1 < vq1+1 < ... < vqp−1+1.

The subsets are progressively constructed. A node N of the BB-tree corres-
ponds to the beginning of a partition encoding, something like:

v1, v2, ..., vq1︸ ︷︷ ︸
X1

| vq1+1, vq1+2, ..., vq2︸ ︷︷ ︸
X2

|...| vqh−1+1, vqh−1+2, ..., vqh−1+t︸ ︷︷ ︸
Xh

We extend N by at most n − qh−1 − t + 1 new branches. The first branch is
obtained by closing the current subset Xh and by creating a new subset Xh+1

which will contain at least vqh−1+t+1. The other branches correspond with the
possibilities to expand the current class Xh by adding an extra vertex (greater

45

than vqh−1+t) to it: vqh−1+t+1, or vqh−1+t+2 but not vqh−1+t+1, or vqh−1+t+3 but
neither vqh−1+t+1 nor vqh−1+t+2, and so on...

Three evaluation functions F1, F2, F3 are designed to evaluate the quality
of every node N of the BB-tree. They can be split into two parts. The first
part is the same for the three functions: it takes into account the contribution
of the vertices already dispatched inside the subsets of the partition under
construction associated with N ; for this, we only sum the weights of the edges
with both extremities in a same subset. The second part depends on the
function. For F1, we add all the negative weights of the edges with at least
one extremity greater than vqh−1+t. In F2, we sharpen the design of F1 by
considering some triples of vertices (triangles) {a, b, c} and by noting that if
the weights of the edges between a, b and c have not the same sign, then the
contribution of {a, b, c} cannot be the sum of the negative edges, as in F1; we
design a greedy algorithm to choose these triangles in order to improve F1 as
much as possible. The last function, F3, is the most sophisticated. It is based
on the Lagrangean relaxation of the transitivity constraints (see above).

Other ingredients, not described here, allow us also to cut branches of the
BB-tree. During the talk, we will discuss the efficiency of the evaluation func-
tions and of the other ingredients, based on experiments dealing with different
kinds of graphs: instances of Régnier’s problem or of Zahn’s problem, instances
coming from the literature, random instances, or instances with special com-
binatorial or algorithmic properties.

References

[1] J.-P. Barthélemy, B. Monjardet: The median procedure in cluster analysis and
social choice theory, Mathematical Social Sciences 1, 1981, 235-267.

[2] I. Charon, O. Hudry: Noising methods for a clique partitioning problem,
Discrete Applied Mathematics 154 (5), 2006, 754-769.

[3] I. Charon, O. Hudry: Self-tuning of the noising methods, Optimization 58 (7),
2009, 1-21.

[4] S. Régnier: Sur quelques aspects mathématiques des problèmes de classification
automatique, I.C.C. Bulletin 4, Rome, 1965.

[5] Y. Wakabayashi: The Complexity of Computing Medians of Relations,
Resenhas, 3 (3), 1998, 323-349.

[6] C.T. Zahn: Approximating symmetric relations by equivalence relations, SIAM
Journal on Applied Mathematics, 12, 1964, 840-847.

46

Static symmetry breaking in circle packing

Alberto Costa, Pierre Hansen ∗, Leo Liberti

LIX (UMR CNRS 7161), École Polytechnique, 91128 Palaiseau, France.

Key words: symmetry breaking constraints, packing of equal circles,
reformulation, narrowing, nonconvex NLP.

1 Introduction

We present new Static Symmetry-Breaking Inequalities (SSBI) [11,6] for the
problem of packing equal circles in a square [9]. The new SSBIs provide a
marked computational improvement with respect to past work [1], though not
yet at the level where a purely Mathematical Programming (MP) based spatial
Branch-and-Bound (sBB) can be competitive with a Branch-and-Bound (BB)
“boosted” by combinatorial and geometrical devices such as [9]. We consider
the following formulation of Circle Packing in a Square (CPS) problem:
given N ∈ N and S ∈ Q+, can N non-overlapping circles of unit radius
be arranged in a square of side 2S? This is equivalent to the more usual
formulation where one maximizes the number of non-overlapping circles of
unit radius in a square of side 2S with S ∈ Q+: it suffices to consider the
usual correspondence (via bisection) of optimization and decision problems.

Let N = {1, . . . , N} and N ′ = {1, . . . , N − 1}. The CPS is formulated as the
following MP:

max{α | ∀i < j ∈ N (xi − xj)
2 + (yi − yj)

2 ≥ 4α ∧ x, y ∈ [1− S, S − 1]N} (1)

where (xi, yi) ∈ R2 are the coordinates of the center of the i-th circle, for all
i ∈ N . For any given N,L > 1, if a global optimum (x∗, y∗, α∗) of (1) has
α∗ ≥ 1 then the CPS instance is a YES one. The CPS formulation (1) can
be solved with standard off-the-shelf Mixed-Integer Nonlinear Programming
(MINLP) sBB solvers such as Couenne [2]. As the instance size increases,

⋆ Financial support by grants: ANR 07-JCJC-0151 “ARS”, Digiteo 2009-14D “RM-
NCCO”, Digiteo 2009-55D “ARM” is gratefully acknowledged.
∗ Also at GERAD and HEC Montreal, Canada.

Email addresses: costa@lix.polytechnique.fr (Alberto Costa),
pierre.hansen@gerad.ca (Pierre Hansen), liberti@lix.polytechnique.fr
(Leo Liberti).

CTW2010, University of Cologne, Germany. May 25-27, 2010

these solvers yield search trees of disproportionate sizes. This is mostly due to
the symmetries of the problem.

The concepts of solution symmetries and formulation symmetries were intro-
duced in Constraint Programming [3] and brought to MP in the early 2000’s
[10,11]. If z is a solution of a problem P and πz is also a solution (where π
permutes the components of z), π is a solution symmetry. A solution sym-
metry is a formulation symmetry if π also fixes the MP formulation of P .
Most symmetry breaking techniques (including SSBIs) are based on formula-
tion symmetries, because these are easier to detect. The formulation group of
MINLPs (including nonconvex NLPs such as (1)) can be detected automati-
cally using the method described in [6]. This method was shown in [7] to yield
an interesting reformulation for another sphere packing problem, namely the
Kissing Number Problem (KNP) [4]. Adjoining SSBIs to a formulation results
in a reformulation of the narrowing type [5,8]: if Q is a narrowing of P then
there is a mapping from the global optima G(Q) to the global optima G(P)
— thus, if one is able to solve the simpler reformulation Q, then one can find
a global optimum of P through the given mapping.

The automatic symmetry detection method of [6] was deployed in [1] on in-
creasingly larger CPS instances to formulate the conjecture, and then prove,
that the formulation group of the CPS is C2×SN , where C2 (the cyclic group
of order 2) refers to swapping x and y axes and SN (the symmetric group of
order N) refers to reindexing the circles in an arbitrary way. The constraints
∀i ∈ N ′ (xi ≤ xi+1) were shown in [1] to provide a narrowing of the CPS when
adjoined to (1). In the rest of this paper we present a different narrowing of
the CPS and discuss its impact on Couenne’s performance.

2 New SSBI-based CPS narrowing

Let L = ⌊S⌋, N ′′ = {1, L+ 1, 2L+ 1, . . . , (⌈N/L⌉ − 2)L+ 1}, and define the
following constraint sets: S = {xi ≤ xi+1 | i ∈ N ′}, Ai = {xh ≤ xh+1 | h ∈
N ′ r {i+L− 1}} and Ci = {yi ≤ yi+L} for all i ∈ N ′′. Notice that these sets
contain strings belonging to the formal MP language [1]: thus, when writing
{yi ≤ yi+L}, for example, we do not refer to the set of all points y satisfying
yi ≤ yi+L but rather to the singleton set containing the string “yi ≤ yi+L” as
its element. Accordingly, we consider the following MP formulations: CPS′ ≡
CPS∪S , CPSi ≡ CPS∪Ai∪Ci for all i ∈ N ′′ and CPS′′ ≡ CPS∪⋃

i∈N ′′(Ai∪
Ci), where P ∪D denotes the MP formulation derived by adjoining constraints
in D to P . The formulation CPS′ was shown in [1] to be a narrowing of CPS.

Proposition 1 For all i ∈ N ′′, CPSi is a narrowing of CPS.

Proof. Let i ∈ N ′′ and (x̄, ȳ, ᾱ) ∈ G(CPS). For a permutation π ∈ SN we assume

π(x̄, ȳ, ᾱ) = (πx̄, πȳ, ᾱ) where π acts on a vector in RN by permuting the indices of

its components; notice that since π is simply a reindexing of the circles, π(x̄, ȳ, ᾱ) ∈

48

G(CPS). Furthermore, since CPS′ is known to be a narrowing of CPS, we can assume

WLOG that (x̄, ȳ, ᾱ) satisfies S . If ȳi ≤ ȳi+L the result holds, otherwise assume

ȳi > ȳi+L. Consider the permutation σi =
∏L−1

ℓ=0 (i+ ℓ, i + L+ ℓ) in SN ; σi(x̄, ȳ, ᾱ)

has the following properties: (a) by the action of the 2-cycle (i, i + L) (appearing

in σi when ℓ = 0) we have ȳi < ȳi+L; (b) ∀ℓ ∈ {0, . . . , L − 2} we have σix̄i+ℓ =

x̄i+L+ℓ ≤ x̄i+L+ℓ+1 = σix̄i+ℓ+1 and σix̄i+L+ℓ = x̄i+ℓ ≤ x̄i+ℓ+1 = σix̄i+L+ℓ+1; (c)

∀h ∈ N ′ such that h 6∈ Hi = {i, . . . , i+2L−1} we have σix̄h = x̄h ≤ x̄h+1 = σix̄h+1

because σi fixes all h 6∈ Hi. Thus σi(x̄, ȳ, ᾱ) ∈ G(CPS) and satisfies the constraints

of CPSi. 2

Lemma 2 Let n = ⌈N/L⌉ − 1 and Σ = {σi | i ∈ N ′′}. Then 〈Σ〉 ∼= Sn.

Proof. Notice N ′′ = {(j−1)L+1 | 1 ≤ j ≤ n}, and define a map ϕ((j−1)/L+1) =

j, under which ϕ(Σ) = {(1, 2), (2, 3), . . . , (n − 1, n)}. This map induces a group

homomorphism ϕ̄ : 〈Σ〉 → Sn given by ϕ̄(σi) = (ϕ(i), ϕ(i) + 1), which can be

verified to be injective and surjective. 2

Similarly, for all h < k ∈ N ′′ we have 〈Σhk〉 = 〈{σi | h ≤ i < k}〉 ∼=
Sym(Ihk), the symmetric group on the set Ihk = {ϕ(h), . . . , ϕ(k)}. Thus, for
all h, k ∈ N ′′, the permutation τhk =

∏L−1
ℓ=0 (h + ℓ, k + ℓ) can be obtained

as a certain product of the σi’s for i ∈ ϕ−1(Ihk). More precisely, we have
τhk = (ϕ(k)− 1, ϕ(k))(ϕ(k)− 2, ϕ(k)− 1) · · · (ϕ(h), ϕ(h)+ 1)(ϕ(h)+ 1, ϕ(h)+
2) · · · (ϕ(k)− 1, ϕ(k)).

Theorem 3 CPS′′ is a narrowing of CPS.

Proof. Let (x̄, ȳ, ᾱ) ∈ G(CPS), and consider the set V of all constraints Ci ≡
{yi ≤ yi+L} violated by (x̄, ȳ, ᾱ). Let ψ be the (invertible) map given by ψ(Ci) =

(ϕ(i), ϕ(i) + 1); then ψ(V) is a set of transpositions that can be partitioned into

maximal non-disjoint subsets Shk = {(ϕ(h), ϕ(h) + 1), . . . , (ϕ(k) − 1, ϕ(k))}; let T

be the set of pairs (h, k) for which Shk is in the partition of ψ(V). It is easy to verify

that if πhk =
∏

ℓ∈Ihk

h+ℓL<k−ℓL

τh+ℓL,k−ℓL then πhkȳ satisfies the constraints in ψ−1(Shk).

Furthermore, by maximality of the Shk, the permutations πhk are disjoint. Now, if

π =
∏

(h,k)∈T πhk, π(x̄, ȳ, ᾱ) is such that πȳ satisfies all constraints in V and πx̄

satisfies all constraints in
⋃

i∈N ′′ Ai by Prop. 1. Thus π(x̄, ȳ, ᾱ) ∈ G(CPS′′). 2

3 Computational results

CPS′ CPS′′

Inst. f∗ nodes tree f∗ nodes tree

16 4 0.660 2381772 642285 1 2795501 839240

25 5 1 461224 188835 1 521487 222846

36 6 0 49962 23784 1 76409 34825

49 7 0 12577 6090 1 21366 10136

68 8 0 4 1 0.943 1057 497

86 9 0 4 1 0.640 5 1

We compare Couenne’s
performance on formula-
tions CPS′ and CPS′′ for
some “limit” instances of
CPS (i.e. N circles fit
in the square but N + 1
do not). Our compara-
tive results, shown below, have been obtained on a 2.4GHz Intel Xeon CPU

49

with 24 GB RAM running Linux. The table displays the following statistics at
termination (10h of CPU time): objective function value f ∗ of the incumbent,
number of BB nodes closed, number of BB nodes still on the tree. The best
upper bound at termination was fixed at 2 (and hence the gap was always
> 100%) for all reformulations and instances. However, the statistics on the
number of nodes show that CPS′′ is a better reformulation than CPS′. The
incumbent statistics also show that CPS′′ behaves better than CPS′ when used
to derive heuristic solutions.

References

[1] P. Hansen A. Costa and L. Liberti. Formulation symmetries in circle packing.
In R. Mahjoub, editor, ISCO 2010 Proceedings, Electronic Notes in Discrete
Mathematics, Amsterdam, accepted. Elsevier.

[2] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4):597–634, 2009.

[3] D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry
definitions for constraint satisfaction problems. In P. van Beek, editor,
Constraint Programming, volume 3709 of LNCS. Springer, 2005.

[4] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for
the kissing number problem. Discrete Applied Mathematics, 155(14):1837–1841,
2007.

[5] L. Liberti. Reformulations in mathematical programming: Definitions and
systematics. RAIRO-RO, 43(1):55–86, 2009.

[6] L. Liberti. Reformulations in mathematical programming: Symmetry.
Mathematical Programming, in revision.

[7] L. Liberti. Symmetry in mathematical programming. In J. Lee and S. Leyffer,
editors, Mixed Integer Nonlinear Programming. IMA, Minneapolis, in revision.

[8] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical
programming: A computational approach. In A. Abraham et al., editors,
Foundations of Computational Intelligence Vol. 3, number 203 in Studies in
Computational Intelligence, pages 153–234. Springer, Berlin, 2009.

[9] M. Locatelli and U. Raber. Packing equal circles in a square: a deterministic
global optimization approach. Discrete Applied Mathematics, 122:139–166,
2002.

[10] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94:71–90, 2002.

[11] F. Margot. Symmetry in integer linear programming. In M. Jünger et al.,
editors, 50 Years of Integer Programming, pages 647–681. Springer, Berlin, 2010.

50

Chromatic index of chordless graphs

R. Machadoa,b, C. Figueiredoa, and N. Trotignonc,

a COPPE - Universidade Federal do Rio de Janeiro
b Instituto Nacional de Metrologia, Normalização e Qualidade Industrial

c CNRS, LIAFA, Université Paris 7

Abstract

A graph G is said to be chordless if no cycle in G has a chord. Chordless graphs
are exactly the graphs whose line graphs are wheel-free, which implies a connection
between the study of the chromatic index of chordless graphs and the study of the
chromatic number of wheel-free graphs. For example, chordless graphs of maximum
degree ∆ = 3 are ∆-edge-colourable, and this implies the 3-vertex-colorability of
{wheel,ISK4}-free graphs [11]. In the present work we investigate the chromatic
index of chordless graphs with higher degrees. We describe a decomposition result
for chordless graphs and use this result to prove that every chordless graph of
maximum degree ∆ ≥ 3 has chromatic index ∆.

Key words: chordless graphs, chromatic index, edge-colouring

1 Introduction

Let G = (V,E) be a simple graph. The maximum degree of a vertex in G
is denoted ∆(G). A k-edge-colouring of G is a function π : E → {1, 2, ..., k}
such that no two adjacent edges receive the same colour c ∈ {1, 2, ..., k}. The
chromatic index of G, denoted by χ′(G), is the least k for which G has a
k-edge-colouring. Vizing’s theorem [16] states that χ′(G) = ∆(G), and G said
to be Class 1, or χ′(G) = ∆(G)+ 1, and G said to be Class 2. Edge-colouring
is NP-complete for regular graphs [8,10] of degree ∆ ≥ 3. The problem is
NP-complete also for the following classes [4]: comparability (hence perfect)
graphs, line graphs of bipartite graphs (hence line graphs and clique graphs),
{induced k-cycle}-free graphs (k ≥ 3), cubic graphs of girth k (k ≥ 4). Graph

CTW2010, University of Cologne, Germany. May 25-27, 2010

classes for which edge-colouring is polynomially solvable include the following:
bipartite graphs [9], split-indifference graphs [12], series-parallel graphs (hence
outerplanar) [9], k-outerplanar graphs [2] (k ≥ 1). The complexity of edge-
colouring is unknown for several well-studied strong structured graph classes,
for which only partial results have been reported, such as cographs [1], join
graphs [7], planar graphs [14], chordal graphs, and several subclasses of chordal
graphs such as indifference graphs [6], split graphs [5] and interval graphs [3].

Lêvéque, Maffray and Trotignon [11] studied the class of chordless graphs,
which are the graphs whose cycles are all chordless. There are two main moti-
vations to study the class. The first motivation is its relation with the the class
of wheel-free graphs: chordless graphs are exactly the graphs whose line graphs
are wheel-free. Hence, the study of the chromatic index of chordless graphs has
importance to the study of the (vertex) chromatic number of wheel-free graphs
and subclasses. For example, the 3-vertex-colourability of {wheel, ISK4}-free
graphs is consequence [11] of the fact that chordless graphs of maximum de-
gree 3 are Class 1. The second motivation for the study of the chromatic
index of chordless graph is the fact that they are a subclass of the class of
graphs that do not contain, as induced subgraph, a cycle with unique chord,
called unichord-free graphs. The edge-colouring problem is NP-complete when
restricted to unichord-fre graphs [13]; hence, it is of interest to determine sub-
classes of unichord-free graphs for which ege-colouring is polynomial.

2 Structure of chordless graphs

We describe a decomposition result for chordless graphs. This result is used
in Section 3 to determine the chromatic index of chordless graphs.

A graph is strongly 2-bipartite if it is square-free and bipartite with bipartition
(X, Y) where every vertex in X has degree 2 and every vertex in Y has degree
at least 3. A graph is sparse if every edge is incident to a vertex of degree at
most 2. A cutset of a graph G is a set of vertices whose exclusion disconnects
G. The following cutsets are used in the known decomposition theorems of the
class of chordless graphs:

• A 1-cutset of a connected graph G = (V,E) is a node v such that V can be
partitioned into sets X, Y and {v}, so that there is no edge between X and
Y . We say that (X, Y, v) is a split of this 1-cutset.

• A proper 2-cutset of a connected graph G = (V,E) is a pair of non-adjacent
nodes a, b, both of degree at least three, such that V can be partitioned into
sets X, Y and {a, b} so that: |X| ≥ 2, |Y | ≥ 2; there is no edge between X
and Y , and both G[X ∪ {a, b}] and G[Y ∪ {a, b}] contain an ab-path. We
say that (X, Y, a, b) is a split of this proper 2-cutset.

52

A graph is called basic if: (1) is cycle with at least four vertices or strongly
2-bipartite; and (2) has no decomposition by 1-cutset or proper 2-cutset.

The block GX (resp. GY) of a graph G with respect to a 1-cutset with split
(X, Y, v) is G[X∪{v}] (resp. G[Y ∪{v}]). The blocks GX and GY of a graph G
with respect to a proper 2-cutset with split (X, Y, a, b) are defined as follows.
If a node c has only neighbors a and b in G, then GX := G[X ∪ {a, b, c}]
(resp. GY := G[Y ∪ {a, b, c}]). Otherwise, GX (resp. GY) is obtained from
G[X ∪ {a, b}] (resp. G[Y ∪ {a, b}]) by adding new node c adjacent to a and b.

Theorem 1 [11] describes a decomposition of chordless graphs into sparse
graphs. As we state in Theorem 2, sparse graphs can be decomposed by proper
2-cutsets. From Theorems 1 and 2, we state the new decomposition result of
Theorem 3. Finally, Theorem 4 proves that a non-basic chordless graph has a
decomposition in which (at least) one of the blocks is basic.

Theorem 1 (Lévêque, Maffray and Trotignon [11]) If G is a chordless graph,
then either G is sparse or G admits a 1-cutset or G admits a proper 2-cutset.

Theorem 2 If G is sparse graph with ∆(G) ≥ 3 then either G is strongly
2-bipartite or G admits 1-cutset or G admits proper 2-cutset.

Theorem 3 If G is chordless graph then either G is strongly 2-bipartite or G
is cycle on at least 4 vertices or G admits 1-cutset or G admits proper 2-cutset.

Theorem 4 If G is a biconnected non-basic chordless graph then G admits
proper 2-cutset with split (X, Y, a, b) such that GX is basic.

3 Chromatic index of chordless graphs

We apply the structure results of Section 2 to show that every chordless graph
of maximum degree at least 3 is Class 1. We show how to ∆(G)-edge-colour
a graph G ∈ C′ by combining ∆(G)-edge-colourings of its blocks with respect
to a decomposition by proper 2-cutset.

Lemma 5 Let G be a chordless graph of maximum degree ∆ ≥ 3 and let
(X, Y, a, b) be a split of proper 2-cutset, in such a way that GX is basic. If GY

is ∆-edge-colourable, then G is ∆-edge-colourable.

Theorem 6 Every chordless graph of maximum degree ∆ ≥ 3 is Class 1.

PROOF. Sketch. Assume G biconnected. If G is basic, then G is strongly
2-bipartite, hence Class 1. If G is not basic, then G has proper 2-cutset with

53

split (X, Y, a, b) such that GX is basic. Assume, as induction hypothesis, that
GY is ∆-edge-colourable. By Lemma 5, graph G is ∆-edge-colourable.

References

[1] M. M. Barbosa, C. P. de Mello, and J. Meidanis. Local conditions for edge-
colouring of cographs. Congr. Numer. 133 (1998) 45–55.

[2] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms 11 (1990) 631–643.

[3] V. A. Bojarshinov. Edge and total colouring of interval graphs. Discrete Appl.
Math. 114 (2001) 23–28.

[4] L. Cai and J. A. Ellis. NP-Completeness of edge-colouring some restricted graphs.
Discrete Appl. Math. 30 (1991) 15–27.

[5] B. L. Chen, H.-L. Fu, and M. T. Ko. Total chromatic number and chromatic
index of split graphs. J. Combin. Math. Combin. Comput. 17 (1995) 137–146.

[6] C. M. H. de Figueiredo, J. Meidanis, C. P. de Mello, and C. Ortiz. Decompositions
for the edge colouring of reduced indifference graphs. Theoret. Comput. Sci. 297
(2003) 145–155.

[7] C. De Simone and C. P. de Mello. Edge-colouring of join graphs. Theoret.
Comput. Sci. 355 (2006) 364–370.

[8] I. Holyer. The NP-completeness of edge-colouring. SIAM J. Comput. 10 (1982)
718–720.

[9] D. S. Johnson. The NP-completeness column: an ongoing guide. J. Algorithms 6
(1985) 434–451.

[10] D. Leven and Z. Galil. NP-completeness of finding the chromatic index of regular
graphs. J. Algorithms 4 (1983) 35–44.

[11] B. Lévêque, F. Maffray, and N. Trotignon. On graphs with no induced
subdivision of K4. Preprint available at www.liafa.jussieu.fr/ trot.

[12] C. Ortiz, N. Maculan, and J. L. Szwarcfiter. Characterizing and edge-colouring
split-indifference graphs. Discrete Appl. Math. 82 (1998) 209–217.

[13] R. Machado, C. Figueiredo, and K. Vušković. Chromatic index of graphs with
no cycle with unique chord. Theoret. Comput. Sci. 411 (2010) 1221–1234.

[14] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class
I. J. Combin. Theory Ser. B 83 (2001) 201–212.

[15] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle
with a unique chord and its consequences. J. Graph Theory 63 (2010) 31–67.

[16] V. G. Vizing. On an estimate of the chromatic class of a p-graph (in russian).
Diskret. Analiz 3 (1964) 25–30.

54

Lattice Polyhedra and Submodular Flows

Satoru Fujishige and Britta Peis

Key words: distributive lattices, Edmonds-Giles polyhedra, submodularity

Lattice polyhedra were introduced by Hoffman and Schwartz as a common frame-
work for various discrete optimization problems. They are specified by a ternary
matrix whose row set forms a consecutive, supermodular lattice and some submod-
ular rank function (the terms “sub”-and “supermodular” can also be interchanged).
Though lattice polyhedra are known to be integral, so far no combinatorial algo-
rithm could have been found for the corresponding linear optimization problem.
We show that the important class of distributive lattice polyhedra in which the
underlying lattice is both, sub-and supermodular can be reduced to Edmonds-Giles
polyhedra. Thus, submodular flow algorithms can be applied to this class of lattice
polyhedra.

1 Introduction

A large class of discrete optimization problems allow a formulation as integer linear
program with underlying ternary matrix: given a matrix A ∈ {−1, 0, 1}L×E , some
weight function w ∈ RE, lower and upper bounds c, d ∈ RE and some “rank”
function f ∈ RL find an integral solution of

(LP) max
x∈RE

{wT x | Ax ≤ f, c ≤ x ≤ d}.

This problem is easily seen to be NP-hard even if restricted to binary matrices.
Therefore, we are looking for more special structures of the polyhedron

P(A, f) = {x ∈ RE | Ax ≤ f, c ≤ x ≤ d}.
A promising class is that of lattice polyhedra which were introduced by Hoffman and
Schwartz [HS78] and shown to be integral. The name comes from a certain, very
general, lattice structure on A on which f is submodular.

Definition 1 (Lattice polyhedra) Let A ∈ {−1, 0, 1}L×E be a matrix with en-
tries χ(i, e) for i ∈ L and e ∈ E, and let c, d ∈ RE and f ∈ RL. Then the polyhedron

P(A, f) = {x ∈ RE | Ax ≤ f, c ≤ x ≤ d}

CTW2010, University of Cologne, Germany. May 25-27, 2010

is called a lattice polyhedron if the row index set L forms a lattice L = (L,�,∧,∨)
on which f is submodular, i.e., f satisfies

f(i) + f(j) ≥ f(i ∧ j) + f(i ∨ j) ∀i, j ∈ L,

and where for all i, j, k ∈ L and all e ∈ E the following three hold:

(C1) if i ≺ j ≺ k and χ(i, e) = χ(k, e) = t 6= 0, then χ(j, e) = t,

(C2) if i ≺ j, then χ(i, e) · χ(j, e) ≥ 0, and

(C3) χ(i, e) + χ(j, e) ≤ χ(i ∨ j, e) + χ(i ∧ j, e).

Analogously, if, in the above definition, function f is supermodular and (C3) is
replaced by

(C3′) χ(i, e) + χ(j, e) ≥ χ(i ∨ j, e) + χ(i ∧ j, e),

the polyhedron

P′(A, f) = {x ∈ RE | Ax ≥ f, c ≤ x ≤ d}
is also called a lattice polyhedron. The lattice L is called consecutive if properties
(C1) and (C2) are satisfied. If L satisfies (C3) (or (C3′)), we call it supermodular
(or submodular).

Lattice polyhedra form a common framework for various combinatorial structures
such as polymatroids, the intersection of polymatroids, and Edmonds-Giles polyhe-
dra. Several min-max results for combinatorial structures can be derived from the
following theorem:

Theorem 1 ([HS78], [H82]) If f, c and d are integral, then all vertices of lattice
polyhedra are integral.

However, this integrality result is only a structural existence theorem without al-
gorithmic foundation. While several greedy-type algorithms have been developed
for special instances of lattice polyhedra in the last decades (see e.g. [?], [FP08],
[FK96], [FK00], [2], [E70], [3], [DH03], up to now no combinatorial algorithm could
have been found for lattice polyhedra in its general form, even if the polyhedra are
restricted to binary matrices.

A very important class of lattice polyhedra is that of distributive lattice polyhedra,
in which the lattice (L,�,∧,∨) is distributive and (C3) is satisfied with equality.

Let us first recall some basic facts about distributive lattices: A lattice (L,�,∧,∨)
is called distributive if the binary operators ∧,∨ satisfy the distributive laws. Alter-
natively, distributive lattices can be characterized by the exclusion of the sublattices
N5 and M3. By a theorem of Birkhoff, a distributive lattice L is isomorphic to the

56

lattice D(P) of all ideals 1 of poset (P,�) on the set P of join-irreducible elements 2

of L. (For more details about lattices the reader is referred to [B91].)

Beside classical examples of combinatorial structures such as polymatroids, the in-
tersection of polymatroids, or submodular systems, distributive lattice polyhedra
also cover Edmonds-Giles polyhedra (see below). Furthermore, we show in Theo-
rem 2 below that a large class of lattice polyhedra is in fact distributive. Finally,
we show in Theorem 3 that distributive lattice polyhedra can in fact be reduced to
Edmonds-Giles polyhedra for which several efficient algorithms exist.

Theorem 2 Let P(A, f) be a lattice polyhedron in which any two rows of A are
distinct and property (C3) is satisfied with equality. Then the underlying lattice
(L,�,∧,∨) is distributive.

Proof: For the sake of contradiction, assume that L is not distributive, i.e., that
it contains an N5- or an M3-sublattice. Then there exist five distinct elements
i, j, k, l,m ∈ L such that

l = i ∧ j = i ∧ k and m = i ∨ j = i ∨ k.

Since χ(j) 6= χ(k) by the assumption, choose some element e ∈ E with χ(j, e) 6=
χ(k, e). Since (C3) is satisfied with equality, it follows that

χ(l, e) + χ(m, e) = χ(i, e) + χ(j, e) = χ(i, e) + χ(k, e),

which implies χ(j, e) = χ(k, e), a contradiction. 2

Edmonds-Giles polyhedra. Let G = (V,E) be a connected directed graph
and F ⊆ 2V be a ring family of subsets of vertex set V , (i.e., F is union-and
intersection-closed). Given a submodular function f : F → R and lower and upper
bounds on the edges c, d : E → R, the Edmonds-Giles polyhedron is

P(G,F , f) = {x ∈ RE | x(∆+(S)) − x(∆−(S)) ≤ r(S) ∀S ∈ F , c ≤ x ≤ d},
where ∆+(S) and ∆−(S) denote, respectively, the sets of arcs leaving S and of en-
tering S. (In the original definition, F is a crossing family on which f is crossing
submodular. However, it suffices to consider the case of ring families with submod-
ular f , as the more general crossing case can be reduced to it using the Dilworth
truncation (see e.g. [Fuj91]).) Edmonds and Giles [EG77] proved that P(G,F , f) is
integral, and several algorithms for the corresponding linear optimization problem,
called the submodular flow problem, have been established (see e.g., the survey pa-
per [FI00]. Almost all submodular flow algorithms are based on generalizations of
different min-cost-flow algorithms).

Also Edmonds-Giles polyhedra turn out to be distributive lattice polyhedra: given
an Edmonds-Giles polyhedron P(G,F , f) consider the collection of ordered pairs

L = {(∆+(S),∆−(S)) | S ∈ F} ⊆ 3E

1 A subset I ⊆ P is an ideal of poset (P,�) if i � j and j ∈ P implies i ∈ P
2 An element i ∈ L is join-irreducible if i = j ∨ k implies i = j or i = k

57

partially ordered by

(∆+(S),∆−(S)) � (∆+(T),∆−(T)) ⇐⇒ S ⊆ T

and with join- and meet-operations

(∆+(S),∆−(S)) ∨ (∆+(S),∆−(S)) = (∆+(S ∪ T),∆−(S ∪ T))

(∆+(S),∆−(S)) ∧ (∆+(T),∆−(T)) = (∆+(S ∩ T),∆−(S ∩ T)).

Also for all S ⊆ V and e ∈ E define

χ(S, e) =





1 e ∈ ∆+(S)

−1 e ∈ ∆−(S)

0 otherwise

Then (L,�,∧,∨) with such a χ is a consecutive, sub- and supermodular lattice.

While it seems that the Edmonds-Giles polyhedra form a special class of distributive
lattice polyhedra, we will see that they are in fact equivalent, i.e., we show that any
distributive lattice polyhedron can be reduced to some Edmonds-Giles polyhedron.
For this, we construct an auxiliary digraph G whose vertices correspond to the
join-irreducible elements P of L and whose edges correspond to the elements in
E. We then show that the lattice polyhedron is equivalent to the Edmonds-Giles
polyhedron P(G,D(P), f), i.e., we show (in the appendix)

Theorem 3 If P(A, f) is a distributive lattice polyhedron, then there exists an aux-
ilary digraph G = (P,E) whose vertices correspond to the join-irreducible elements
of L such that

P(A, f) = {x ∈ RE′ | ∀I ∈ D(P) : x(∆+(I))− x(∆−(I)) ≤ f(I), c ≤ x ≤ d}
=P(G,D(P), f)

References

[B91] G.Birkhoff: Lattice Theory. Amer. Math. Soc. 91 (1991).

[DH03] B.L. Dietrich and A.J. Hoffman: On greedy algorithms, partially ordered
sets, and submodular functions. IBM J. Res. & Dev. 47 (2003), 25-30.

[E70] J. Edmonds: Submodular functions, matroids, and certain polyhedra, in:
Combinatorial Structures and Their Applications, R. Guy et al. eds., Gordon
and Breach, New York, 1970, 69-87.

58

[FK96] U. Faigle and W. Kern: Submodular linear programs on forests. Math.
Programming 72 (1996), 195-206.

[FK00] U. Faigle and W. Kern: On the core of ordered submodular cost games.
Math. Programming 87 (2000), 483-489.

[FP08] U.Faigle and B. Peis, Two-phase greedy algorithms for some classes of
combinatorial linear programs, In SODA, 2008, 161-166.

[1] A. Frank: Increasing the rooted-connectivity of a digraph by one. Math.
Programming 84 (1999), 565-576.

[H82] A.J. Hoffman: Ordered sets and linear programming. In: Ordered Sets (editor:
I. Rival), D. Reidel Publishing company (1982), 619-654.

[HS78] A. Hoffman and D.E. Schwartz, On lattice polyhedra, Proceedings of Fifth
Hungarian Combinatorial Coll. (A. Hajnal and V.T. Sos, eds.), North-Holland,
Amsterdam, 1978, pp. 593–598.

[EG77] J. Edmonds and R. Giles: A min-max relation for submodular functions on
graphs. Ann. Discrete Math., 1 (1977), 185-204.

[FI00] S. Fujishige and S. Iwata: Algorithms for submodular flows. Special Issue
on Algorithm Engineering: Surveys. IEICE Transactions on Informations and
Systems, Vol.E83-D, No.3 (2000).

[Fuj91] S. Fujishige: Submodular Functions and Optimization. Annals of Discrete
Math., 47, (1991).

[2] U. Krüger: Structural aspects of ordered polymatroids. Discr. Appl. Math. 99
(2000), 125-148.

[3] M. Queyranne, F. Spieksma, and F. Tardella: A general class of greedily solvable
linear programs. Math. Oper. Res. 23 (1998), 892-908.

59

hh

60

On the partition dimension of Cartesian

product graphs

Ismael G. Yero a, Juan A. Rodŕıguez-Velázquez a and

Magdalena Lemańska b

aDepartment of Computer Engineering and Mathematics Rovira i Virgili
University, Av. Päısos Catalans 26, 43007 Tarragona, Spain

bDepartment of Technical Physics and Applied Mathematics Gdansk University of
Technology, ul. Narutowicza 11/12 80-233 Gdansk, Poland

Abstract

Let G = (V,E) be a connected graph. The distance between two vertices u, v ∈ V ,
denoted by d(u, v), is the length of a shortest u−v path in G. The distance between
a vertex v ∈ V and a subset P ⊂ V is defined as min{d(v, x) : x ∈ P}, and it is
denoted by d(v, P). An ordered partition {P1, P2, ..., Pt} of vertices of a graph G, is
a resolving partition of G, if all the distance vectors (d(v, P1), d(v, P2), ..., d(v, Pt))
are different. The partition dimension of G, denoted by pd(G), is the minimum
number of sets in any resolving partition of G. In this article we show that for all
pair of connected graphs G,H, pd(G × H) ≤ pd(G) + pd(H) and pd(G × H) ≤
pd(G) + dim(H). Consequently, we show that pd(G×H) ≤ dim(G) + dim(H) + 1.

Key words: Resolving sets, resolving partition, partition dimension, Cartesian
product.

1 Introduction

The concepts of resolvability and location in graphs were described indepen-
dently by Harary and Melter [9] and Slater [16], to define the same structure in
a graph. After these papers were published several authors developed diverse
theoretical works about this topic [2–8,14]. Also, Slater described the useful-
ness of these ideas into long range aids to navigation [16]. Recently, these
concepts were used by a pharmacy company while attempting to develop a
capability of large datasets of chemical graphs [12,13]. Other applications of
this concept to navigation of robots in networks and other areas appear in
[5,11,14]. Some variations on resolvability or location have been appearing in
the literature, like those about conditional resolvability [15], locating domina-
tion [10], resolving domination [1] and resolving partitions [4,7,8].

Email address: ismael.gonzalez@urv.cat (Ismael G. Yero).

CTW2010, University of Cologne, Germany. May 25-27, 2010

Given a graph G = (V,E) and a set of vertices S = {v1, v2, ..., vk} of G,
the metric representation of a vertex v ∈ V with respect to S is the vector
r(v|S) = (d(v, v1), d(v, v2), ..., d(v, vk)), where d(v, vi), with 1 ≤ i ≤ k, de-
notes the distance between the vertices v and vi. We say that S is a resolving
set of G if for every pair of vertices u, v ∈ V , r(u|S) 6= r(v|S). The met-
ric dimension 1 of G is the minimum cardinality of any resolving set of G,
and it is denoted by dim(G). The metric dimension of graphs is studied in
[2–6,17]. Given an ordered partition Π = {P1, P2, ..., Pt} of the vertices of G,
the partition representation of a vertex v ∈ V with respect to the partition
Π is the vector r(v|Π) = (d(v, P1), d(v, P2), ..., d(v, Pt)), where d(v, Pi), with
1 ≤ i ≤ t, represents the distance between the vertex v and the set Pi, that
is d(v, Pi) = minu∈Pi

{d(v, u)}. We say that Π is a resolving partition of G if
for every pair of vertices u, v ∈ V , r(u|Π) 6= r(v|Π). The partition dimension
of G is the minimum number of sets in any resolving partition of G and it is
denoted by pd(G). The partition dimension of graphs is studied in [4,7,8,17].
It is natural to think that the partition dimension and metric dimension are
related; in [7] it was shown that for any nontrivial connected graph G we have

pd(G) ≤ dim(G) + 1. (1)

The study of relationships between invariants of Cartesian product graphs and
invariants of its factors appears frequently in research about graph theory. In
the case of resolvability, the relationships between the metric dimension of
the Cartesian product graphs and the metric dimension of its factors was
studied in [2,3]. An open problem on the dimension of Cartesian product
graphs is to prove (or finding a counterexample) that for all pair of graphs
G,H ; dim(G×H) ≤ dim(G)+dim(H). In the present paper we study the case
of resolving partition in Cartesian product graphs, by giving some relationships
between the partition dimension of Cartesian product graphs and the partition
dimension of its factors. More precisely, we show that for all pair of connected
graphs G,H ; pd(G×H) ≤ pd(G)+pd(H) and pd(G×H) ≤ pd(G)+dim(H).
Consequently, we show that pd(G×H) ≤ dim(G) + dim(H) + 1.

2 Results

Theorem 1 For any connected graphs G1 and G2,

pd(G1 ×G2) ≤ pd(G1) + pd(G2).

By (1) we obtain the following direct consequence of Theorem 1.

Corollary 2 For any connected graphs G1 and G2,

pd(G1 ×G2) ≤ pd(G1) + dim(G2) + 1.

As we can see below, the above relationship can be improved.

1 Also called locating number.

62

Theorem 3 For any connected graphs G1 and G2,

pd(G1 ×G2) ≤ pd(G1) + dim(G2).

We note that there are graphs for which Theorem 1 estimates pd(G1 × G2)
better than Theorem 3 and vice versa. For example Theorem 1 leads to
pd(Kn × Pn) ≤ n + 2 while Theorem 3 gives pd(Kn × Pn) ≤ n + 1. On the
contrary, if G denotes the graph in Figure 1, Theorem 1 leads to pd(G×G) ≤ 8
while Theorem 3 gives pd(G×G) ≤ 13.

Fig. 1. {{1, 4, 8, 12}, {2, 5, 9, 13}, {3, 6, 10, 14}, {7, 11, 15}} is a resolving partition of
G and {4, 5, 6, 8, 9, 10, 12, 13, 14} is a resolving set of G.

As a direct consequence of above theorem and (1) we deduce the following
interesting result.

Corollary 4 For any connected graphs G1 and G2,

pd(G1 ×G2) ≤ dim(G1) + dim(G2) + 1.

One example of graphs for which the equality holds in Corollary 4 (and also
in Corollary 5 (ii)) are the graphs belonging to the family of grid graphs:
pd(Pr × Pt) = 3.

Corollary 5 For any connected graph G,

(i) pd(G×Kn) ≤ pd(G) + n− 1.
(ii) pd(G× Pn) ≤ pd(G) + 1.
(iii) pd(G× Cn) ≤ pd(G) + 2.
(iv) pd(G×K1,n) ≤ pd(G) + n− 1.

Acknowledgments: This work was partly supported by the Spanish Min-
istry of Science and Innovation through projects TSI2007-65406-C03-01 “E-
AEGIS”, CONSOLIDER INGENIO 2010 CSD2007-0004 “ARES”.

References

[1] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination
in graphs, Mathematica Bohemica 128 (1) (2003) 25–36.

[2] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R.
Wood, On the metric dimension of Cartesian product of graphs, SIAM Journal
of Discrete Mathematics 21 (2) (2007) 273–302.

63

[3] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, On
the metric dimension of some families of graphs, Electronic Notes in Discrete
Mathematics 22 (2005) 129–133.

[4] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition
dimensions of a graph, Ars Combinatoria 88 (2008) 349–366.

[5] G. Chartrand, L. Eroh, M. A. Jhonson, O. R. Oellermann, Resolvabiblity in
graphs ans the metric dimension of a graph, Discrete Applied Mathematics 105
(2000) 99–113.

[6] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of
graphs, Computer and Mathematics with Appplications 39 (2000) 19–28.

[7] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph,
Aequationes Mathematicae 59 (2000) 45–54.

[8] M. Fehr, S. Gosselin, O. R. Oellermann, The partition dimension of Cayley
digraphs Aequationes Mathematicae 71 (2006) 1–18.

[9] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria
2 (1976) 191–195.

[10] T. W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in
trees, Discrete Applied Mathematics 154 (2006) 1293–1300.

[11] B. L. Hulme, A. W. Shiver, P. J. Slater, A Boolean algebraic analysis of fire
protection, Algebraic and Combinatorial Methods in Operations Research 95
(1984) 215–227.

[12] M. A. Johnson, Structure-activity maps for visualizing the graph variables
arising in drug design, Journal of Biopharmaceutical Statististics 3 (1993) 203–
236.

[13] M. A. Johnson, Browsable structure-activity datasets, Advances in Molecular
Similarity (R. Carb–Dorca and P. Mezey, eds.) JAI Press Connecticut (1998)
153–170.

[14] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete
Applied Mathematics 70 (1996) 217–229.

[15] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey,
International Journal of Mathematics and Mathematical Sciences 38 (2004)
1997–2017.

[16] P. J. Slater, Leaves of trees, Proc. 6th Southeastern Conference on
Combinatorics, Graph Theory, and Computing, Congressus Numerantium 14
(1975) 549–559.

[17] I. Tomescu, Discrepancies between metric and partition dimension of a
connected graph, Discrete Mathematics 308 (2008) 5026–5031.

64

On the Design of the

Fiber To The Home Networks

Stefano Gualandi, Federico Malucelli, Domenico L. Sozzi

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{gualandi,malucell,sozzi}@elet.polimi.it

Key words: LP-based Randomized Rounding, Local Search, Network Design

1 Introduction

Telecommunications network design is the source of many interesting chal-
lenges in combinatorial optimization. Among the more recent ones there is
the design of the Next Generation Access Networks completely based on fiber
cable technology that, in certain cases, may reach single users and for this
reason are called Fiber To The Home networks (FTTH). These networks are
organized into two levels. In the first level few central offices are connected
with high capacity fiber cables to splicing cabinets usually located at street
intersections. Cabinets are then connected with users or houses. The fiber
technology allows to have very long connection cables thus few central offices
suffice to serve many more users with respect to traditional copper based net-
works. The new network characteristics and the incumbent deployment, that
requires a great extent of investments, motivate the investigations on quan-
titative optimization models and algorithms for the planning that can help
investors to decide which type of fiber network to select and how to opera-
tionally implement it. For a review on technical aspects refer to [2].

2 Problem Statement and Formulation

Planning a FTTH network can be seen as a particular case of facility location
problem where facilities belong to two levels. Given a set of candidate sites
O for central offices, a set of candidate sites C for cabinets and the set of
homes to be served S, the problem consists in deciding in which candidates
sites install central offices and cabinets, and connect users to central offices

CTW2010, University of Cologne, Germany. May 25-27, 2010

passing through a cabinet. In addition to these decisions the problem considers
also the multiplexing capability of cabinets. Depending on the type of device
installed in the cabinet, several signals transmitted on fibers to the users can
be groomed into a single fiber to the central office thus allowing for a capacity
saving in the leg central office-cabinet. The additional decision level is thus the
type of multiplexing technology to be installed in each cabinet. Decisions must
consider central office and cabinet installation costs, multiplexing technology
costs, and cable deployment costs.

Let s1i and M1
i be the cost and the capacity (in terms of number of fibers)

of central office i. Let T be the types of technologies that can be installed in
cabinets. Multiplexing technology t in a cabinet allows to send mt channels
on a single fiber towards the central office. Let s2jt be the installation cost of
cabinet j with technology t, andM2

j its maximum capacity in terms of number
of fibers coming from the users. With dij we indicate the known distance
(computed on the street graph) between any two sites i and j.

A possible formulation of the problem introduces two sets of binary variables:
y1i , i ∈ O whose value is 1 if a central office is activated in site i, and y2jt, j ∈
C, t ∈ T if a cabinet with multiplexing technology t is activated in site j.
We need another set of binary variables x2

jl whose value is 1 if basement l is
assigned to cabinet j. Integer variables x1

ij give the number of fibers connecting
central office i with cabinet j. The last two sets of variables are defined for
all pairs i, j and j, l such that the distance between the corresponding sites is
less than or equal to the maximum allowed distance. In order to consider only
pairs of sites within a feasible distance, we introduce a set E of pairs i, j with
i ∈ O and j ∈ C such that dij ≤ L1, and a set F of pairs j, l with j ∈ C and
l ∈ S such that djl ≤ L2.

The Integer Programming model is as follows:

min
∑

i∈O
s1i y

1
i +

∑

j∈C

∑

t∈T
s2jty

2
jt +

∑

ij∈E
c1ijx

1
ij +

∑

jl∈F
c2jlx

2
jl (1)

s.t.
∑

jl∈E
x2
jl = 1, ∀l ∈ S, (2)

∑

ij∈E
x1
ij ≤ M1

i y
1
i , ∀i ∈ O, (3)

∑

t∈T
y2jt ≤ 1, ∀j ∈ C, (4)

∑

jl∈F
x2
jl ≤ M2

j

∑

t∈T
y2jt, ∀j ∈ C, (5)

mt

∑

ij∈E
x1
ij ≥

∑

jl∈F
x2
jl −M2

j (1− y2jt), ∀j ∈ C, ∀t ∈ T, (6)

y1i ∈ {0, 1}, ∀i ∈ O, y2jt ∈ {0, 1}, ∀j ∈ C, ∀t ∈ T, (7)

x1
ij ∈ Z+, ∀ij ∈ E, x2

jl ∈ {0, 1}, ∀jl ∈ F. (8)

66

Constraints (2) state that each user must be connected to a cabinet. Con-
straints (3) are twofold: they force the activation of central office i (i.e. it sets
variable yi to 1) if at least one cabinet j is assigned to it, and they limit the
number of cabinets assigned to i according to the capacity. Constraints (4)
determine that either a cabinet is not active (when the left hand side is equal
to 0) or at most a multiplexing technology is assigned to it. While constraints
(6) relate the number of incoming fibers in a cabinet from users with the num-
ber of outgoing fibers towards the central office. This number must account
for the multiplexing factor installed in the cabinet. The objective function (1)
sums up the cost s1i of each selected central office, the cost s2jt for installing
the technology t in cabinet j and the connection costs for the fibers between
central offices and cabinets and between cabinets and the users.

In order to improve the linear relaxation, we introduce the following constraint:

∑

t∈T
y2jt ≤

∑

ij∈E
x1
ij , ∀j ∈ C. (9)

that states that if a cabinet is activated it must be connected to a central
office. Though the improvement on the lower bound is modest, this constraint
does have an impact on our LP-based randomized rounding algorithm.

3 Solution Approaches and Computational Results

We have developed two approaches to solve the FTTH problem. The first
approach is a LP-based Randomized Rounding (LP-RR) algorithm, the second
is a Constraint-Based Local Search (CBLS) algorithm. Both approaches are
implemented exploiting features of the Comet constraint language [3]. For
the lack of space, we just briefly sketch the two approaches.

Our LP-RR algorithm, motivated by the results in [1], is based on the obser-
vation that once we have decided which central offices and which cabinets are
opened, that is, the variables y1 and y2 have been fixed to either 1 or 0, the
remaining problem is reduced to a generalized minimum cost flow problem on
a tripartite graph. So we first randomly round the variables y1 and y2, and
only then, the x1 and x2 variables.

The proposed CBLS approach relies on the use of invariants (see [4]) to incre-
mentally maintain the necessary information to guide the search procedure.
Once a greedy procedure has computed a feasible solution, we execute a local
search algorithm based on a simple move: select the basement l connected to
a cabinet j, and select a different open cabinet j′ 6= j that is not saturated
(it has some capacity left) such that moving l from j to j′ gives, after the
propagation of the new assignments, the best improvement in the objective

67

Table 1
LP-based Randomized Rounding (LP-RR) versus Constraint-based Local Search
(CBLS). Cost and Time (in seconds). Standard deviations omitted.

LP-RR CBLS

|O| |C| |S| Cost Time Best-Cost Cost Time Best-Cost

3 10 100 2383 31 2383 2383 0.6 2383
10 35 400 6979 716 6966 6864 1.2 6860
15 65 841 13630 1735 13599 13349 44.6 13306
20 100 1521 25499 2465 25427 24850 316 24752
25 120 3025 55073 4768 55052 51752 330 51646
30 140 6084 121794 7705 121974 118224 1105 118135
35 150 10000 239668 26915 239668 229677 1817 229244

Table 2
Solving big Rome instances with the CBLS approach: gaps computed with respect
to the linear relaxation (P).

|O| |C| |S| Cost (stdev) Time (stdev) Best-Cost LP-Gap

30 140 5982 4561215 (0.01%) 1803.6 (0.14%) 4560780 0.9%
30 140 5995 4164941 (0.01%) 2168.7 (0.69%) 4164724 1.1%
30 140 6014 3462920 (0.01%) 1426.9 (0.35%) 3462857 1.4%
35 150 10020 3126763 (0.02%) 2511.8 (0.44%) 3126385 2.4%
35 150 10040 5937585 (0.01%) 3484.7 (0.55%) 5936733 1.1%
35 150 10072 6663950 (0.01%) 1183.6 (0.54%) 6663481 0.9%

function. After this move, we possibly increase the number of fibers outgoing
cabinet j′.

Tables 1 shows a comparison of the two approaches, reporting computational
results averaged over 5 runs for each problem instance. Even if both approaches
are interesting, the CBLS outperforms the LP-RR both in quality and compu-
tation time. Table 2 reports the results for a set of realistic instances based on
the street graph of the city of Rome. Note that CBLS computes near-optimal
solution in short time.

References

[1] Barahona, F., Chudak, F.: Near-optimal solutions to large-scale facility location
problems. Discrete Optimization 2(1) (2005) 35–50

[2] Kramer, G., Pesavento, G.: Ethernet Passive Optical Network (EPON):
building a next-generation optical access network. IEEE Communications
Magazine 40(2) (2002) 66–73

[3] Van Hentenryck, P., Michel, L.: Control abstractions for local search.
Constraints 10(2) (2005) 137–157

[4] Van Hentenryck, P., Michel, L.: Differentiable invariants. In: Frédéric
Benhamou (Ed.), Proc CP-06 LNCS-4204. Springer, (2006) 604–619

68

A Branch-and-Price Approach to the

k-Clustering Minimum Biclique Completion

Problem

Stefano Gualandi a,∗ Francesco Maffioli a Claudio Magni b

aPolitecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

bSAS Institute, Analytic Innovation Center
via Darwin 20-22, 20143, Milano

Key words: Biclique, Branch-and-Price, Meta-heuristic

1 Introduction

Given a bipartite graph G = (S, T, E), the k-clustering Minimum Biclique
Completion Problem (k-MinBCP) consists of finding k bipartite subgraphs
(clusters), such that each vertex i of S appears in exactly one subgraph, every
vertex j in T appears in each cluster in which at least one of its neighbors
appears, and the total number of edges that would complete each subgraph
into a complete bipartite subgraph, i.e., a biclique, is minimized. This problem
was introduced in [1], as an application of the problem of bundling channels in
multicast transmissions. k-MinBCP is NP-Hard, and its approximability, to
the best of our knowledge, remains unknown. In the literature, k-MinBCP is
tackled with two approaches: in [1], it is solved with an Integer Programming
approach, a Bilinear Programming formulation and its standard linearization;
and in [2], it is solved with an hybrid Constraint Programming–Semidefinite
programming approach.

In this work, we present a Branch-and-Price algorithm that embeds a new
meta-heuristic to find integer solutions, and a non-trivial branching rule. Com-
putational results show that our algorithm outpeforms the state-of-the-art
approaches to this problem.

∗ Corresponding author.
Email addresses: {maffioli,gualandi}@elet.polimi.it,

claudio.magni@ita.sas.com (Claudio Magni).

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Problem Formulation

In this work, we use a Column Generation formulation that is similar to the
one proposed in [1]: the master problem is a set partitioning problem where
each column represents the subset of vertices of S that induces a cluster t. The
cost ct of each cluster t is equal to the number of edges that would complete
the corresponding subgraph into a biclique. Let λt be a 0–1 variable, equal to
1 if the cluster t is part of the solution, and 0 otherwise. Let ct be the cost of
the t-th cluster. Let T be the collection of every possible cluster, and let St

be the subset of vertices of S that form the t-th cluster. The master problem
formulation is as follows:

min
∑

t∈T
ctλt (1)

s.t.
∑

t∈T |i∈St

λt = 1 ∀ i ∈ S (2)

∑

t∈T
λt = k (3)

λt ∈ {0, 1} ∀ t ∈ T (4)

Constraints (2) is the partitioning constraints, one for each vertex in S. Con-
straint (3) is the cardinality constraint on the number of cluster to be selected.
Let πi and ν be the dual multipliers of constraints (2) and (3), respectively.
Then, the pricing subproblem is the problem of finding a vertex– and edge–
weighted biclique of negative reduced cost. The vertex weights are given by
the dual multipliers πi, while the edge weights gives the number of edges that
would complete the subgraph into a biclique. The pricing subproblem is as
follows:

min
∑

{i,j}∈Ē
zij −

∑

i∈I
πixi − ν (5)

s.t. zij ≥ xi + xl − 1 ∀{i, j} ∈ Ē, ∀{l, j} ∈ E (6)

xi, zij ∈ {0, 1} ∀i ∈ I, ∀{i, j} ∈ Ē (7)

Constraints (6) force the binary variable zij to be 1 if the corresponding edge
is part of the biclique, and 0 otherwise. Note that an edge belongs to a biclique
if it exists at least a pair of vertices i and l both in S such that a vertex j ∈ T
exists with (i, j) ∈ Ē and (l, j) ∈ E.

3 Branch-and-Price Implementation

Differently from [1], that uses the column generation only to compute lower
bounds, we have embedded the column generation into a branch-and-price

70

exact algorithm. The branch-and-price we have implemented is based on three
key feature: (i) a Variable Neighborhood Search (VNS) heuristic that computes
very efficient primal solution, providing tight upper bounds; (ii) a slightly
different VNS heuristic that compute nearly-optimal solutions for the pricing
subproblem, and (iii) a non-trivial branching rule.

The VNS heuristic used to find integer solutions, hence yielding upper bounds,
explores basically three different neighborhoods: (i) moving a single vertex
from one subgraph to another subgraph, (ii) swapping two vertices in two
different subgraphs, and (iii) selecting two vertices in two different subgraphs
and moving them into new subgraphs. In addition, after each cycle of VNS,
we perform a search in the space of the unfeasible solutions, by augmenting
by one the number of clusters. Then, a greedy procedure is used to recover a
feasible solution. Although the search in the unfeasible space is very simple,
it does improve the performance of our meta-heuristic.

In our Column Generation approach to k-MinBCP the bottleneck is the solu-
tion of the pricing subproblem. We have implemented two methods for solving
the pricing problem. The first method is again a VNS heuristic very similar to
the heuristic used to find integer solutions to k-MinBCP: we basically look
for a single subgraph with negative reduced cost. Whenever the heuristic is
unable to find a negative reduced cost solution, we use an integer program-
ming approach to find any solution of negative reduced cost, not necessarily
the solution of minimum cost.

The meta-heuristic and the Column Generation are used to obtain upper and
lower bounds within our branch-and-price algorithm. Though many instances
are solved at the root node (the upper bounds obtained with our VNS heuristic
are equal to the lower bounds obtained by Column Generation), this is not
always the case. Therefore, we have devised a branching rule that exploits the
problem structure. Once a pair of vertices i and j of S appearing in a fractional
solution of the restricted master problem are selected, the algorithm adds two
branching constraints: either i and j must appear in the same cluster, or they
cannot. In the first branch, we merge the two nodes in a single new node,
obtaining a new instance of the same problem. In the second branch, in order
to force two vertices to appear in different clusters, we add the corresponding
constraints to the pricing subproblem.

4 Computational Results

We tested our branch-and-price algorithm on two classes of instances: the
first set of instances consists of random bipartite graphs, and the second set of
instances extracted by the MovieLens data set (http://movielens.umn.edu).

71

Table 1

|I| |J| k UB LB Opt N Time SCIP

15 15 3 72 72 72 0 6.38s 11s

15 15 4 59 59 59 0 2.92s 370s

15 15 5 50 50 50 0 4.14s –

18 18 3 109 109 109 0 26s 137s

18 18 4 96 96 96 0 20s –

18 18 5 86 85 86 8 47s –

20 20 3 156 154 156 12 275s –

20 20 4 139 137 138 8 206s –

20 20 5 123 121 123 38 175s –

The branch-and-price algorithm is implemented in Comet [4], using lp solve

as linear solver. Extensive computational results are reported in [3].

Table 1 shows a summary of the comparison of the computational results ob-
tained with our branch-and-price algorithm and with the ILP solver SCIP. The
table gives the results for the most challenging instances, that are instances
randomly generated with |S| = |T |. The first three columns give the |S|, |T |,
and the number of required cluster k. Then, the table reports theUB obtained
with our VNS heuristic at the root node, the lower bound LB obtained via
column generation at the root node, the optimal solution Opt obtained via
Branch-and-Price, the number of branching nodes N, and the computation
time in seconds. For the SCIP solver, we just report the computation time in
seconds. Note that our branch-and-price algorithm is able to solve instances
of dimension up to 20× 20. In addition, we remark that previous work solved
only instances up to 10× 10 in [1] and 12× 12 in [2].

References

[1] Faure, N., Chrétienne, P., Gourdin, E., Sourd, F.: Biclique completion problems
for multicast network design. Discr. Optim. 4(3) (2007) 360–377

[2] Stefano Gualandi. k-clustering minimum biclique completion via a hybrid CP
and SDP approach. In Proc Integration of AI and OR Techniques in CP for
Combinatorial Optimization, LNCS 5547, pages 87–101. Springer, 2009.

[3] Claudio Magni. Biclique completion problem: models and algorithms. Master
Project, Politecnico di Milano, September 2009.

[4] Comet web site, Brown University, http://comet-online.org

72

The game chromatic number of 1-caterpillars

Adrien Guignard 1

Université de Bordeaux
LaBRI UMR 5800

351, cours de la Libération
F-33405 Talence Cedex, France

Abstract

The game chromatic number of a graph is defined using a two players game. In
1993, Faigle et al. proved that the game chromatic number of trees is at most four.
In this paper we investigate the problem of characterizing those trees with game
chromatic number three, and setttle this problem for 1-caterpillars.

Key words: game chromatic number, caterpillar, tree, leaf.

1 Introduction

The game chromatic number of a graph G, denoted by χg(G), is defined
through a coloring game with two players Alice and Bob and a set of k col-
ors. Each move by either player consists of coloring an uncolored node of G
with a color i of the set. Adjacent vertices must be colored by distinct colors.
The game ends if no more vertices can be colored. Alice wins the game if all
vertices are colored. Otherwise, Bob wins.
The game chromatic number χg(G) is the least number of colors for which
Alice has a winning strategy in this game. This parameter was introduced by
Bodlaender [1] (see also [3] for a recent survey). Since then the problem has
attracted considerable attention and has been studied for various classes of
graphs [4] [5]. For instance, it is proved by Zhu [6] that if P is a planar graph
then χg(P) ≤ 17. Faigle et al. [2] proved that the game chromatic number of
every tree is at most four. A natural question in this framework is to charac-
terize the trees with given game chromatic number k, for 1 ≤ k ≤ 4. Since
the answer is obvious for k = 1, 2, our aim is to characterize the set of trees

1 Email:guignard@labri.fr

CTW2010, University of Cologne, Germany. May 25-27, 2010

with game chromatic number three. The general characterization seems to be
a difficult problem. Therefore, we restrict ourselves to the set of caterpillars
and settle the problem for 1-caterpillars.

2 Definitions and properties

A tree is called a caterpillar if a path remains after the removal of all its leaves.
This path is called the spine of the caterpillar. A 1-caterpillar is a caterpillar
such that every vertex of the spine is a neighbor of exactly one leaf, except
for the two extremities of the spine that have two leaves.

Since the game chromatic number of a caterpillar C is at most 4, we will play
with three colors and determine whether Alice can complete the coloration of
C or not. If it is possible, we will say that Alice wins and otherwise that Bob
wins. We denote by [C, c] a caterpillar C equipped with a partial coloring c
of its vertices. Such a caterpillar will be simply denoted by C whenever the
partial coloring c is clear from the context. To compute the game chromatic
number of caterpillars, we have to know for any [C, c] not only whoever wins
if Alice begins, but also if Bob begins.

We thus define the outcome of a partially colored caterpillar C, denoted by
o(C), as follows:

(1) o(C) = B if Bob wins whoever starts the game;
(2) o(C) = P if the next player loses (so the Previous one wins);
(3) o(C) = N if the Next player wins;
(4) o(C) = A if Alice wins whoever starts the game.

We denote by Opt(C) the set of options of C, that is the set of partially colored
caterpillars that can be obtained from C after one move. If C has an option
with outcome X , we say that C has an X -option. We extend the definition of
outcome to a set of caterpillars C: o(C) = {o(C), C ∈ C}.

Proposition 2.1 Let C be a not totally colored caterpillar.

(1) o(C) = B ⇔ o(Opt(C)) ∈
{
{B} , {N ,B}

}
;

(2) o(C) = P ⇔ o(Opt(C)) = {N};
(3) o(C) = N ⇔ o(Opt(C)) contains P, or contains A and B;
(4) o(C) = A ⇔ o(Opt(C)) ∈

{
{A} , {A,N}

}
.

Since we will need to consider outcomes of disjoint unions of caterpillars, we
need some properties to compute o(C1 ∪ C2) according to o(C1) and o(C2)

74

(where C1 ∪ C2 denotes the disjoint union of C1 and C2).
We call the signed outcome of C the outcome X of C signed by the parity of
the number of uncolored nodes of C, denoted by o′(C) = X0 or X1.

Proposition 2.2 Firstly, if o(C1) = B or o(C2) = B then o(C1 ∪ C2) = B.
Otherwise, we define an addition function of signed outcomes, denoted by ”⊕”,
that satisfies o′(C1∪C2) = o′(C1)⊕ o′(C2), and is given by the following table:

⊕ P0 P1 N0 N1 A0 A1

P0 P0 B1 B0 N1 P0 N1

P1 B1 B0 B1 N0 P1 N0

N0 B0 B1 B0 B1 N0 N1

N1 N1 N0 B1 B0 N1 N0

A0 P0 P1 N0 N1 A0 A1

A1 N1 N0 N1 N0 A1 A0

We note � the relation on the set of outcomes {B,P,N ,A} such that:

(1) A � N � B
(2) P and every another outcome X are incomparables.

If T and U are two partially colored caterpillars, we say that T is a subgraph of
U and note T ⊆ U if and only if V (T) ⊆ V (U), E(T) ⊆ E(U) and ∀v ∈ V (T),
cT (v) = cU(v) (where cT (v) is the color of v in T).

Proposition 2.3 Let T and U be two partially colored caterpillars. If T ⊆ U
then o(T) � o(U)

Let C be a partially colored caterpillar. Observe that if C has an uncolored
vertex v having three neighbours colored with distinct colors, then the outcome
is B (since v cannot be colored). Similary, if C has a colored node v with degree
k ≥ 2, the forest C ′ obtained from C by splitting v into k colored leaves
with the same color than v, each linked to a neighbour of v (thus creating k
connected components) is equivalent to C (we mean o′(C ′) = o′(C)). Finally,
if C has an uncolored node v with two leaves colored with the same color, the
caterpillar C ′ obtained from C by deleting one of these two leaves is equivalent
to C.

75

3 The family of 1-caterpillars

Let C be a partially colored 1-caterpillar whose spine s1s2 . . . sℓ contains no
colored vertices. Moreover let s0 (resp. sℓ+1) be one of the two leaves connected
to s1 (resp. sℓ). The leaves connected to s1 or sℓ are the ends of C. We associate
with C a word w(C) = w0 . . . wℓ+1 on the alphabet {z, 1, 2, 3} defined as
follows: w0 is the color of s0 if it is colored or z otherwise (the same is true of
wℓ+1), and for every i, 1 ≤ i ≤ ℓ, wi is the color of the leaf connected to si, or
z if this leaf is not colored. For instance, the following caterpillar is associated
with the word 1zz2z2.

Using properties of outcomes and subgraphs, we prove the following results.

Thorme 3.1 Let C be a 1-catepillar with w(C) = aznb and a, b ∈ {1, 2, 3}.
The outcome of C is given by the following table:

n 1 2 3 4 5 6 7 8 9

o(C) AN A N A N A N AN N

n 10 11 12 13 14 15 16 17 ≥ 18

o(C) N N N N NB N B NB B

where XY stands for X if a = b and Y otherwise.

The proof relies on several lemmas which consider the outcomes of some 1-
caterpillars with particular partial colorings. We proceed by studying a family
F of caterpillars (for instance az2nbb with n ≥ 0) and compute the value n
defined as the smallest size of a caterpillar with outcome N (resp. B), so that
every smaller caterpillar in F has outcome A (resp. A or N). We also have to
check that no 1-caterpillar of this family has outcome P.

Thorme 3.2 Let C an uncolored 1-caterpillar with n nodes of degree 3.

(1) If n ≥ 28 then o(C) = B
(2) If 23 ≤ n ≤ 27 then o(C) = N
(3) Otherwise o(C) = A

76

References

[1] H. L. Boadlaender, On the complexity of some coloring games, Int. J. Found
Comput. Sci. 2(2) (1991), 133–147.

[2] U. Faigle, U. Kern, H. A. Kierstead and W. T. Trotter, On the game chromatic
number of some classes of graphs, Ars Combin 35 (1993), 143–150.

[3] T. Bartnicky, J. Grytczuk, H. A. Kierstead and X. Zhu, The map coloring game,
Am. Math. Monthly, 114 (2007), 793–803.

[4] H. A. Kierstead and W. T. Trotter, Planar graph coloring with an uncooperative
partner, J. Graph Theory 18(6) (1994), 569-584.

[5] D. Guan and X. Zhu, The game chromatic number of outerplanar graphs, J.
Graph Theory 30(1999), 67–70.

[6] X. Zhu, Refined activation strategy for the marking game, J. Combin. Theory
Ser. B 98(1) (2008), 1–18

77

hh

78

On Hamiltonian cycles through prescribed

edges of a planar graph

Jochen Harant

Department of Mathematics, Technical University of Ilmenau,
D-98684 Ilmenau, Germany

Key words: planar graph, hamiltonian cycle, prescribed edges

We use [3] for terminology and notation not defined here and consider finite
simple graphs only.
The first major result on the existence of hamiltonian cycles in graphs embed-
dable in surfaces was by H. Whitney [12] in 1931, who proved that 4-connected
maximal planar graphs are hamiltonian. In 1956, W.T. Tutte [10,11] gener-
alized Whitney’s result from maximal planar graphs to arbitrary 4-connected
planar graphs. Actually, Tutte proved that a 4-connected planar graph G has
a hamiltonian cycle through any two edges of a given face of G. Moreover, in
[7,8] it is proved that a 4-connected planar graph G has a hamiltonian cycle
through any three edges of a given face of G or that face is a 3-gon.
Improving a result of C. Thomassen [9], in 1997, D.P. Sanders [7] proved the
following:

Theorem 1 ([7]) Every 4-connected planar graph on at least three vertices
has a hamiltonian cycle through any two of its edges.

In [6] the connectivity of a subset X of the vertex set of a graph G is defined
as follows. Let G be a graph, X ⊆ V (G), and G[X] be the subgraph of G
induced by X. A set V ⊂ V (G) splits X if the graph G− V obtained from G
by removing V contains at least two components each containing a vertex of
X. Let κ(X) be infinity if G[X] is complete, or the minimum cardinality of a
set V ⊂ V (G) splitting X. Let us remark that G is k-connected if and only if
κ(V (G)) ≥ k.

Theorem 2 is a local version of Theorem 1 and in case X = V (G), Theorem 1
follows from Theorem 2. It is proven in [6].

Theorem 2 ([6]) If G is a planar graph, X ⊆ V (G), |X| ≥ 3, κ(X) ≥ 4,
E ⊂ E(G[X]), and |E| ≤ 2, then G contains a cycle C with X ⊆ V (C) and
E ⊂ E(C).

CTW2010, University of Cologne, Germany. May 25-27, 2010

The following theorem is proven in [4] and, unlike Theorem 2, it is appropriable
if |E| ≥ 3.

Theorem 3 ([4], Theorem 6) If G is a graph, X ⊆ V (G), E 6= ∅ is a set of
independent edges of G[X], |X| ≥ 2|E| + 1, and κ(X) ≥ |X| − |E|, then G
contains a cycle C with X ⊆ V (C) and E ⊂ E(C).

Note that Theorem 3 holds for arbitrary graphs. Obviously |X| ≥ 2|E| since
E is a set of independent edges of G[X]. 1 If X = V (G), |X| − |E| ≥ 6, and
G is planar then Theorem 3 cannot be used since a planar graph is at most
5-connected.

We call a maximal planar graph G a plane triangulation if G is embedded into
the plane. In [1] it was shown that there are 4-connected plane triangulations
containing seven faces of arbitrary distance apart such that each hamiltonian
cycle of that graph misses at least one of these faces, i.e. seven edges cannot
be guaranteed to belong to a hamiltonian cycle of a 4-connected planar graph
even if their pairwise distance is large. Theorem 1 is best possible in the sense
that even three prescribed edges need not belong to a hamiltonian cycle of a
4-connected maximal planar graph. Given two edges xy and uv of a graph G,
the number of edges of a shortest path in G connecting a vertex of {x, y} and
a vertex of {u, v} is called the distance of xy and uv.

Theorem 4 ([5]) There is a 4-connected plane triangulation G containing
E ⊆ E(G) with 3|E| = |E(G)| such that each hamiltonian cycle of G contains
exactly two edges of E. Moreover, for given integer k ≥ 1, G and E can be
chosen such that E contains three edges of pairwise distance at least k.

The situation changes in comparison with Theorem 4, if the connectivity of G
is increased and the pairwise distance of the edges in the set E is at least three.
In this case it is even possible to forbid edges of E to belong to a hamiltonian
cycle as described in the following Theorem 5. A proof is given in [2].

Theorem 5 ([2]) Let G be a 5-connected plane triangulation and E be a set of
edges of G such that the distance between any two edges of E is at least three.
Furthermore, let E = E1 ∪ E2 with E1 ∩ E2 = ∅. Then G has a hamiltonian
cycle C with E1 ⊂ E(C) and E2 ∩ E(C) = ∅.

Theorem 5 does not hold if the 5-connected plane graph G is not a triangu-
lation. Moreover, the existence of a cycle satisfying the assertion of Theorem

1 The inequality |X| ≥ 2|E| + 1 is needed in the proof of Theorem 3 because of
technical reasons. Probably Theorem 3 also holds in case |X| ≥ 2|E|. If in Theorem
3, additionally, G is assumed to be planar, then it remains an open problem whether
the inequality κ(X) ≥ |X| − |E| can be weakened.

80

5 cannot be guaranteed in the case |E| ≥ 5 and E2 = ∅, because for each
integer k there is a 5-connected plane graph G containing a set E ⊂ E(G)
with |E| = 5 such that any two edges of E have distance at least k and there
is no cycle of G containing E.

For three edges of a 5-connected plane triangulation the distance condition
in Theorem 5 can be omitted as follows.

Theorem 6 ([5]) Let G be a 5-connected plane triangulation and E be a set
of three edges of G such that E does not form a facial cycle and there is no
vertex incident with all edges of E. Then G has a hamiltonian cycle containing
E.

Considering 5-connected maximal planar graphs, the following theorem is an
analogue to Theorem 4.

Theorem 7 ([5]) Let G be a 5-connected plane triangulation containing an
independent set V of vertices such that each face of G is incident with exactly
one vertex of V and H = G− V is 3-regular. Then each hamiltonian cycle of
G contains exactly 1

3
|E(H)| − 2 = 1

3
(|V (G)| − 8) edges of H.

Let ek be the smallest integer l such that there is a 5-connected plane trian-
gulation G containing l edges of pairwise distance at least k such that there
is no hamiltonian cycle of G containing all these l edges. If ek does not exist
then we write ek = ∞.

Theorem 5 implies that ek = ∞ if k ≥ 3.

Theorem 8 ([5]) For e1 the inequalities 4 ≤ e1 ≤ 9 hold.
Moreover, there are infinitely many 5-connected maximal planar graphs G con-
taining a set E of 1

3
|E(G)| independent edges such that each hamiltonian cycle

of G misses two edges of E.

It remains open whether e2 is finite or not.

References

[1] T. Böhme, J. Harant, On Hamiltonian Cycles in 4- and 5-connected Plane
Triangulations, Discrete Mathematics, 191(1998),25-30.

[2] T. Böhme, J. Harant, M. Tkáč, On Certain Hamiltonian Cycles in Planar
Graphs, Journal of Graph Theory 32(1999)81-96.

[3] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173(2000).

81

[4] T. Gerlach, J. Harant, On a Cycle through a Specified Linear Forest of a Graph,
Discrete Mathematics, 307(2007)892-895.

[5] F. Göring, J.Harant, Hamiltonian cycles through prescribed edges of 4-
connected maximal planar graphs, Discrete Mathematics 310(2010) 1491-1494.

[6] J. Harant, S. Senitsch, A Generalization of Tutte’s Theorem on Hamiltonian
Cycles in Planar Graphs, Discrete Mathematics 309(2009)4949-4951.

[7] D.P. Sanders, On Paths in Planar Graphs, Journal of Graph Theory
24(1997)341-345.

[8] R. Thomas, X. Yu, Projective Planar Graphs are Hamiltonian, J. Combin.
Theory Ser. B 62(1994)114-132.

[9] C. Thomassen, A Theorem on Paths in Planar Graphs, Journal of Graph Theory
7(1983)169-176.

[10] W.T. Tutte, A Theorem on Planar Graphs, Trans. Amer. Math. Soc.
82(1956)99-116.

[11] W.T. Tutte, Bridges and Hamiltonian Circuits in Planar Graphs, Aequationes
Math.15(1977)1-33.

[12] H. Whitney, A Theorem on Graphs, Ann.Math. 32(1931)378-390.

82

Some bounds on alliances in trees

Ararat Harutyunyan

Department of Mathematics, Simon Fraser University
8888 University Drive, Burnaby, BC, Canada

aha43@sfu.ca

Key words: alliances, global defensive alliance, global offensive alliance, trees,
complete k-ary trees

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [4]. They introduced the concepts of defensive and of-
fensive alliances, global offensive and global defensive alliances and studied
alliance numbers of a class of graphs such as cycles, wheels, grids and com-
plete graphs. Haynes et al. [2] studied the global defensive alliance numbers
of different classes of graphs. They gave lower bounds for general graphs,
bipartite graphs and trees, and upper bounds for general graphs and trees.
Rodriquez-Velazquez and Sigarreta [8] studied the defensive alliance number
and the global defensive alliance number of line graphs. A characterization
of trees with equal domination and global strong defensive alliance numbers
was given by Haynes, Hedetniemi and Henning [3]. Rodriguez-Velazquez and
Sigarreta [5] gave bounds for the defensive, offensive, global defensive, global
offensive alliance numbers in terms of the algebraic connectivity, the spectral
radius, and the Laplacian spectral radius of a graph. They also gave bounds
on the global offensive alliance number of cubic graphs in [6] and the global
offensive alliance number for general graphs in [7].

Balakrishnan et al. [1] studied the complexity of global alliances. They showed
that the decision problems for global defensive and global offensive alliances
are both NP-complete for general graphs.

Given a simple graph G = (V,E) and a vertex v ∈ V , the open neighborhood
of v, N(v), is defined as N(v) = {u : (u, v) ∈ E}. The closed neighborhood of
v, denoted by N [v], is N [v] = N(v) ∪ {v}.

Definition 1 A set S ⊂ V is a defensive alliance if for every v ∈ S, |N [v] ∩

CTW2010, University of Cologne, Germany. May 25-27, 2010

S| ≥ |N(v) ∩ (V − S)|. A defensive alliance S is called a global defensive
alliance if S is also a dominating set.

Definition 2 A set S ⊂ V is an offensive alliance if for every v ∈ V − S,
|N [v] ∩ S| ≥ |N [v] − S|. An offensive alliance S is called a global offensive
alliance if S is also a dominating set.

Definition 3 The global defensive(offensive) alliance number of G is the car-
dinality of a minimum size global defensive(offensive) alliance in G, and is
denoted by γa(G)(γo(G)). A minimum size global defensive(offensive) alliance
is called a γa(G)-set (γo(G)-set).

In this paper, we study the global defensive and global offensive alliance num-
bers of trees. We find the asymptotic order of global defensive alliance number
of complete k-ary trees, and compute exactly the global offensive alliance num-
ber. We also give a sharp bound on the difference between the global offensive
and global defensive alliance numbers for a general tree.

The rest of the paper is organized as follows. In Section 2, we find the global
defensive alliance number of complete binary and complete ternary trees. We
also find tight bounds for the global defensive alliance number of complete
k-ary trees, and determine the asymptotic order. In Section 3, we find the
global offensive alliance number of complete k-ary trees. We also compare the
global offensive and global defensive alliance numbers of a general tree.

2 Defensive Alliances in Complete k-ary Trees

A k-ary tree is a rooted tree where each node has at most k children. A complete
k-ary tree is a k-ary tree in which all the leaves have the same depth and all
the nodes except the leaves have k children. We let Tk,d be the complete k-ary
tree with depth/height d. The proofs of the following theorems are omitted.

Theorem 1 Let n be the order of T2,d. Then γa(T2,d) = ⌈2
5
n⌉ for any d.

Corollary 1 If d ≡ 2(mod 4) or d ≡ 3(mod 4) then there is a unique γa(T2,d)-
set. If d ≡ 0(mod 4) or d ≡ 1(mod 4) then there are exactly two γa(T2,d)-sets.

Theorem 2 If d ≥ 4 then γa(T3,d) = ⌊19
36
n⌋ if d is odd and γa(T3,d) = ⌈19

36
n⌉

if d is even.

Theorem 3 27
64
n− 2 ≤ γa(T4,d) ≤ 27

64
n+ 2.

When k is large, the methods used to prove the above theorems are difficult to
apply. Therefore, for general k, we give upper and lower bounds for γa(Tk,d).

84

Theorem 4 For d ≥ 2, and k ≥ 2,

kd−1

⌊
k − 1

2

⌋
+ kd−1 + kd−2 ≤ γa(Tk,d) ≤ kd−1

⌊
k − 1

2

⌋
+ kd−1 + kd−2 + kd−3.

It follows that γa(Tk,d) ∼ kd−1
⌊
k−1
2

⌋
, where the asymptotics is taken to be

in terms of k. Since the number of vertices of Tk,d is n = kd+1−1
k−1

we get
γa(Tk,d) ∼ n

2
when k tends to infinity. For offensive alliances we have the

following result, the proof of which is omitted.

3 Offensive Alliances vs. Defensive Alliances in general trees

Theorem 5 Let Tk,d be the complete k-ary tree with depth d ≥ 1. Then,

γo(Tk,d) =
⌊

n
k+1

⌋
.

Note that γo(Tk,d) ∼ n
k
with respect to k. As k becomes very large the difference

between γa(Tk,d) and γo(Tk,d) approaches n/2. In general, we are interested if
this difference can be larger for other trees. In fact, we have the following
theorem.

Theorem 6 For any tree T of order n, γa(T) ≤ γo(T) +
n
2
.

Proof 1 Root the tree T at a vertex of largest eccentricity(the eccentricity
of a vertex x is equal to maxy∈V (G)d(x, y)). Let T have a depth d, and let v
be a vertex at depth d − 2. Let u be v’s parent. We are going to proceed by
induction on n. We may assume that diam(T) ≥ 3. Otherwise, T is a star
and the theorem holds (this also establishes the base case).
Let Tv be the subtree of T rooted at vertex v. Let T

′
= T −Tv be the subtree of

T obtained by removing all the vertices of Tv, and let |T ′| = n
′
. Define P to be

the set of children of v in T which are support vertices. Denote by L the set of
children of v which are leaves. By assumption on the diameter of T , |P | ≥ 1.
Let yi denote the number of children of each vertex in P , 1 ≤ i ≤ |P |. The
proofs of the following two claims are omitted due to space restrictions.

Claim 1 γo(T
′
) ≤ γo(T)− |P |.

Claim 2 γa(T) ≤ γa(T
′
) + k where k = 1 + |P | + max

(
⌈ |L|−|P |

2
⌉, 0

)
+

∑|P |
i=1⌊yi−1

2
⌋.

By the last claim and the induction hypothesis we have

γa(T) ≤ γa(T
′
) + k ≤ γo(T

′
) +

n
′

2
+ k.

85

What is left to prove is that γo(T
′
) + n

′

2
+ k ≤ γo(T) +

n
2
. By the first claim,

it is sufficient to prove that k − ⌊n−n
′

2
⌋ ≤ |P |. Since |P | ≥ 1, we have that

1+max

(⌈
|L| − |P |

2

⌉
, 0

)
+

|P |∑

i=1

⌊
yi − 1

2

⌋
≤ 1+

⌊
|L|
2

⌋
+

|P |∑

i=1

⌊
yi − 1

2

⌋
≤
⌊
n− n

′

2

⌋
,

as required.

The above bound is best possible. Consider K1,n−1 where n is odd. Then
γo(K1,n−1) = 1 and γa(K1,n−1) = 1 + n−1

2
.

In a bipartite graph, each partite set forms a global offensive alliance. It follows
that γo(T) ≤ n

2
for any tree T . Therefore, |γa(T) − γo(T)| ≤ n

2
. However, we

believe the following stronger result is true: for any n-vertex tree T , γo(T) ≤
γa(T) +

n
6
. This conjecture, if true, is essentially best possible because of the

following theorem, the proof of which we omit.

Theorem 7 For any constant C > 0, there exists an n-vertex tree T with
γo(T) ≥ γa(T) +

n
6
− C.

References

[1] H. Balakrishnan, A. Cami, N. Deo, and R. D. Dutton, On the complexity
of finding optimal global alliances, J. Combinatorial Mathematics and
Combinatorial Computing, Volume 58 (2006), 23-31.

[2] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Global defensive allliances
in graphs, Electronic Journal of Combinatorics 10 (2003), no. 1, R47.

[3] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, A characterization
of trees with equal domination and global strong alliance numbers, Utilitas
Mathematica, Volume 66(2004), 105-119.

[4] S. M. Hedetniemi, S. T. Hedetniemi, and P. Kristiansen, Alliances in graphs,
Journal of Combinatorial Mathematics and Combinatorial Computing, Volume
48 (2004), 157-177.

[5] J. A. Rodriguez-Velazquez, J.M. Sigarreta, Spectal study of alliances in graphs,
Discussiones Mathematicae Graph Theory 27 (1) (2007) 143-157.

[6] J. A. Rodriquez-Velazquez and J. M. Sigarreta, Offensive alliances in cubic
graphs, International Mathematical Forum Volume 1 (2006), no. 36, 1773-1782.

[7] J. A. Rodriguez-Velazquez, J.M. Sigarreta, Global Offensive Alliances in
Graphs, Electronic Notes in Discrete Mathematics, Volume 25 (2006), 157-164.

[8] J. A. Rodriguez-Velazquez, J. M. Sigarreta, On defensive alliances and line
graphs. Applied Mathematics Letters, Volume 19 (12) (2006) 1345-1350.

86

The Inverse 1-Median Problem in Rd with the

Chebyshev-Norm ⋆

Johannes Hatzl

Institute of Optimization and Discrete Mathematics
Graz University of Technology

Steyrergasse 30, 8010 Graz, Austria

Key words: 1-median problem, inverse location problem, fractional b-matching
problem, parametric flow problem

1 Introduction

This paper focuses on the weighted 1-median problem in Rd where the distance
of two points is measured by the Chebyshev-norm. So far this problem is
only well understood for d = 2. In this case, a linear time algorithm is given
in Hamacher [2]. In this note, we give the first combinatorial algorithm for
d ≥ 3. Furthermore, we discuss an optimality criterion for the d-dimensional
case which is based on linear programming. Using this optimality criterion
we are able to solve the inverse location problem. In the inverse problem the
facility is already given and the task is to modify the weights of the points at
minimum cost such that the given facility is a 1-median with respect to the
new weights.

2 The 1-median problem

The 1-median problem discussed in this note is defined as follows: Given n
points P1, . . . , Pn with Pi = (xi

1, . . . , x
i
d) ∈ Rd for i = 1, . . . , n and associated

non-negative weights wi the task is to find a point P ∗ = (x∗
1, . . . , x

∗
d) ∈ Rd

⋆ This research has been supported by the Austrian Science Fund (FWF) Project
P18918-N18

Email address: hatzl@opt.math.tugraz.at (Johannes Hatzl).

CTW2010, University of Cologne, Germany. May 25-27, 2010

such that
n∑

i=1

wi ‖Pi − P‖∞ ≥
n∑

i=1

wi ‖Pi − P ∗‖∞

for all P ∈ Rd. Note that using some straightforward techniques the problem
minP=(y1,...,yd)∈Rd

∑n
i=1 wi ‖Pi − P‖∞ can be written as a linear programming

problem in the following form:

min
n∑

i=1

wi zi (1)

s.t. zi + yj ≥ xi
j i = 1, . . . , n, j = 1, . . . , d (2)

zi − yj ≥ −xi
j i = 1, . . . , n, j = 1, . . . , d (3)

yj ∈ R, zi ∈ R j = 1, . . . , d, i = 1, . . . , n. (4)

Due to the fact that the variables yj do not appear in the objective function,
we use the well known Fourier-Motzkin elimination to get rid of these variables
in the constraints. We obtain the following equivalent problem

min
n∑

i=1

wi zi

s.t. zi + zk ≥ dik i = 1, . . . , n k = 1, . . . , n

zi ≥ 0 i = 1, . . . , n

where dik := maxj |xi
j − xk

j |. It is easy to see that the corresponding dual
problem is the linear relaxation of the maximum-weight-b-matching problem
on a complete graph. It is shown in Antsee [1] that this graphtheoretical
problem can be solved by a min-cost-flow problem in a bipartite graph.

3 The Inverse Problem

An instance of the inverse problem is given by a set of n points P1, . . . , Pn ∈ Rd

with corresponding non-negative weights wi ≥ 0 and a point P0 (which may
coincide with a given point). The task is to find new weights w̃i ≥ 0 such that
P0 is a 1-median with respect to w̃i and ‖w− w̃‖1 is minimized. The problem
can be formulated in a compact form as follows:

min
n∑

i=1

|wi − w̃i|

s.t.
n∑

i=1

w̃i ‖Pi − P‖∞ ≥
n∑

i=1

w̃i ‖Pi − P0‖∞ ∀P ∈ Rd

w̃i ≥ 0 i = 1, . . . , n.

Before we give a combinatorial algorithm we state the following lemma.

88

Lemma 1 There exists an optimal solution w∗ of the inverse location problem
such that wi ≥ w∗

i holds for all i = 1, . . . , n.

Let us consider the dual linear programming problem of (1)—(4). We intro-
duce non-negative dual variables ui,j for the constraints (2) and non-negative
dual variables vi,j for the constraints (3) and obtain

max
n∑

i=1

d∑

j=1

xi
j (ui,j − vi,j)

s.t.
d∑

j=1

(ui,j + vi,j) = wi i = 1, . . . , n

n∑

i=1

ui,j =
n∑

i=1

vi,j j = 1, . . . , d

ui,j ≥ 0, vi,j ≥ 0 i = 1, . . . , n, j = 1, . . . , d.

In order to interpret the dual problem let us construct the following flow
problem: Consider the bipartite graph G = (V1 ∪ V2, E) where the set V1

consists of n vertices, one for each point Pi of the 1-median problem. The set
V2 has exactly 2d vertices representing the closed cones

Q≥
j := {x ∈ Rd : xj ≥ 0 and |xj| ≥ |xk| ∀k = 1, . . . , d}

and

Q≤
j := {x ∈ Rd : xj ≤ 0 and |xj| ≥ |xk| ∀k = 1, . . . , d}

for j = 1, . . . , d. We have an edge (Pi, Q
∼
j) if Pi is in the cone Q∼

j (∼∈ {≤,≥}).
Moreover, we set the capacity u(e) of the edges of the bipartite graph to
infinity. Furthermore, we add a source s and the edges (s, Pi) for all i = 1, . . . , n
with u(s, Pi) = wi. Finally, we introduce a sink t and an edge from each vertex
in V2 to t with infinite capacity. We denote this network by I(P1, . . . , Pn, w).
Furthermore, a flow in I(P1, . . . , Pn, w) is called perfect if the flow on the edges
(Q≥

j , t) and (Q≤
j , t) is equal for all j. The value of a flow is denoted by v(f).

Now we can state the following theorem.

Theorem 2 Suppose we are given n points P1, . . . , Pn ∈ Rd with non-negative
weights wi ≥ 0. Then, the origin P ∗ = (0, . . . , 0) is an optimal solution of the
1-median problem if and only if there exists a perfect flow f in I(P1, . . . , Pn, w)
such that v(f) =

∑n
i=1 wi.

Example 3 Suppose we are given the following points: P1 = (−1, 3), P2 =
(2, 2), P3 = (4,−1), P4 = (2,−2), P5 = (0,−2) and P6 = (−4, 1) with the
weights w1 = 3, w2 = 1, w3 = 1, w4 = 2, w5 = 2 and w6 = 3. Then, the
corresponding instance I(P1, . . . , Pn, w) of the balancing flow problem admits
a perfect flow f with v(f) =

∑n
i=1 wi (see Figure 1). Thus, we can conclude

that the origin is a 1-median.

89

6

-

?

�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

x1

x2

3

3

1

2

1

2
s

P6

P5

P4

P3

P2

P1

Q≥
2

Q≥
1

Q≤
2

Q≤
1

3

1

1

2

2

3

3

0

1
1

1
1

2

3

Fig. 1. On the left hand side we are given an instance of the 1-median problem where
the cone Q≥

1 is highlighted. The right hand side shows the graph of the balancing
flow problem (without the supersink t). On the edges a perfect flow is given.

It is easy to see that the inverse problem can be solved by the following
algorithm:

Algorithm 1 Step 1: Construct the instance I(P1, . . . , Pn, w)
Step 2: Find a perfect flow f in I(P1, . . . , Pn, w) that maximizes v(f)
Step 3: The new weights are given by w∗

i = f(s, Pi)

The main step is obviously the computation of a maximum perfect flow in Step
2. The maximum perfect flow problem can be reformulated as a parametric
flow problem, where capacities on the edges (Q≥

j , t) and (Q≤
j , t) are given by

a parameter λj . If we maximize

2
d∑

j=1

λj

such that there exists a flow f that saturates all the edges entering the super-
sink t, the flow f is a maximum perfect flow. This maximization problem is
closely related to parametric flow problems discussed in McCormick [3] and
can indeed be solved in polynomial time.

References

[1] R. Antsee, A polynomial algorithm for b-matchings: an alternative approach.
Inform. Process. Lett. (1987), 153–157.

[2] H. Hamacher, Mathematische Lösungsverfahren für planare Standortprobleme.
Braunschweig/Wiesbaden: Vieweg (1995).

[3] T. McCormick, Fast algorithms for parametric scheduling come from extensions
to parametric maximum flow. In STOC ’96: Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing (1996), 319–328.

90

Graph Models and their Efficient
Implementation for Sparse Jacobian Matrix

Determination ⋆

Shahadat Hossain a,∗ and Trond Steihaug b

aDepartment of Mathematics and Computer Science, University of Lethbridge,
Canada

bDepartment of Informatics, University of Bergen, Norway

Abstract

Algorithms for solving large-scale combinatorial scientific computing problems aris-
ing in sparse or otherwise structured matrix computation are often represented by
appropriate graph models and sometimes the same problem can be formulated in
more than one graph models with similar asymptotic computational complexity.
The relative merits of different graph models for the same problem can then be
expressed in terms of factors such as generality of the model and ease of computer
implementation. In this note we briefly review the contemporary graph formula-
tions for large-scale sparse Jacobian matrix determination problem (JMDP) and
suggest the pattern graph model which can be viewed as a unifying framework
for the unidirectional and bidirectional approaches for JMDP. Due to the irregu-
lar memory access pattern combined with low floating point calculations relative
to the volume of data movements the actual running time of sparse matrix and
graph algorithms may achieve only a small fraction of the theoretical performance.
We proffer the use of array-based data structures as the basic building-blocks for
efficient implementation of fundamental graph algorithms on modern cache-based
computer architectures. Numerical results comparing our implementation (DSJM
toolkit) with ColPack [4] is given.

Key words: Sparse Matrix Data Structures, Intersection Graph, Bipartite Graph,
Hypergraph, Pattern Graph

1 Introduction

We consider the problem of determining the Jacobian matrix F ′(x) of a map-
ping F : ℜn 7→ ℜm. In this paper graphs are undirected. The colon notation
of [6] is used to specify sections of a matrix. The (i, j)th entry is denoted by

⋆ This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Research Council of Norway (NFR).∗ Corresponding author.

CTW2010, University of Cologne, Germany. May 25-27, 2010

A(i, j) or aij. When a matrix is displayed the nonzero entries are explicitly
shown while a blank or a ’0’ marks a zero entry. We assume that the sparsity
pattern of matrix F ′(x) is known a priori and that it is computationally more
economical to compute the entire column of F ′(x) than computing individ-
ual entries. Using differences the jth column of the Jacobian matrix may be
approximated as

∂F (x+ ts)

∂t

∣∣∣∣∣
t=0

= F ′(x)s ≈ As =
1

ε
[F (x+ εs)− F (x)] ≡ b (1)

with one extra function evaluation. Also Algorithmic Differentiation (AD) [7]
forward mode gives b = F ′(x)s at a cost which is a small multiple of the cost
of one function evaluation. The Jacobian matrix determination problem can
be stated as below.

Problem 1 (JMDP) Obtain vectors si ∈ ℜn, i = 1, . . . , p and wj ∈ ℜm, j =
1, . . . , q with p + q minimized such that the products (bk = Ask, j = 1, · · · , p
or B = AS) and (cTk = wT

kA, k = 1, · · · , q or CT = W TA) determine the
matrix A uniquely.

In absence of any sparsity information, one may use the Cartesian basis vectors
ei, i = 1, . . . , n in (1) using n extra function evaluations. However, if the
columns are structurally orthogonal i.e. no two columns have nonzero entries
in the same row position only one extra function evaluation

F ′
j + F ′

k ≈ A(:, j) + A(:, k) = 1
ε
[F (x+ ε(ej + ek))− F (x)]

is sufficient to read off the nonzero entries from the product b = As. If the
columns can be partitioned into p structurally orthogonal groups then the
Jacobian matrix is directly determined from the compressed matrix B = AS.
Similarly, the rows can be partitioned into q structurally orthogonal groups
and the Jacobian can be directly determined from CT = W TA using the
reverse mode of AD. The problem of finding minimum cardinality orthogonal
column (or row) partition of matrix A can be solved as different vertex coloring
problems (which in general are NP-hard and therefore are solved by heuristics)
of suitable graph(s) associated with A.

2 Graph Models and Computer Implementation

With regard to the choice of the graph model for the partitioning problem we
expect that the graph formulation

(1) retains exploitable matrix structures,
(2) enables efficient implementation of pertinent algorithms, and
(3) generic enough to encapsulate the combined row-and-column determina-

tion as in Problem JMDP.

92

The intersection graph of the columns of A is denoted by G(A) = (V,E)
where corresponding to A(:, j), j = 1, 2, . . . , n, there is a vertex vj ∈ V and
{vj , vl} ∈ E if and only if A(:, j) and A(:, l), l 6= j have nonzero elements in
the same row position. Then an orthogonal partition of the columns of A is
equivalent to a coloring φ of the vertices of G(A) such that φ(u) 6= φ(v) if and
only if {u, v} ∈ E [1]. Unfortunately, the column intersection graph of A or
AT is unable to expose all the exploitable matrix sparsity. Alternative formu-
lations define graphs based on column segments to allow for better utilization
of available structure or sparsity [8]. However, these alternative formulations
apply to either column direction or row direction but not to a combination of
row and column directions – henceforth bidirectional determination.

The bipartite graph associated with matrix A is denoted by Gb(A) = (Vc ∪
Vr, E) where corresponding to A(:, j), j = 1, 2, . . . , n, there is a column vertex
vj ∈ Vc and corresponding to A(i, :), i = 1, 2, . . . , m, there is a row vertex
vi ∈ Vr and {vi, vj} ∈ E if and only if aij 6= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , m.
The bipartite graph model has been proposed independently by Coleman and
Verma [2] and Hossain and Steihaug [9] in connection with bidirectional de-
termination of Jacobian matrices. In [3] the bipartite graph model has been
considered for column partitioning. The zero-nonzero structure of the underly-
ing matrix is accurately represented in its bipartite graph making it a natural
logical data structure for bidirectional determination. On the other hand, for
the unidirectional determination the model is “asymmetrical” in the sense
that it contains extraneous information. This difficulty is manifested in [3]
where the unidirectional determination posed as distance-2 coloring needed
the qualification “partial” as only one set of vertices are colored.

A hypergraph is a graph in which edges are generalized as hyperedges where a
hyperedge may connect more than vertices. The hypergraph model presented
here is more general than the ones considered in [3]. The hypergraph H(A) =
(V,E) associated with the matrix A has the vertex set

V = {vi|∃k for which aik 6= 0, i = 1, 2, . . . , m} ∪ {vj|∃k for which akj 6= 0, j = 1, 2, . . . , n, }

and corresponding to each row i and each column j the hyperedges ei ∈ E
and ej ∈ E, respectively, are defined by

ei = {vk|aik 6= 0} and ej = {vk|akj 6= 0}.

A lateral neighbor of aij 6= 0 is a nonzero aij′ 6= 0 in row i of A such that j′− j
is the smallest if j′ > j or such that j − j′ is the smallest if j > j′ among all
such indices j′ in row i. Vertical neighbors can be interpreted in an analogous
way with the roles of i and j interchanged. The sparsity-pattern graph (or
simply the pattern graph) associated with A is GP(A) = (V,E), where

V = {vij : aij 6= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n}

and

{vij , vi′j′} ∈ E if aij and ai′j′ are lateral or vertical neighbors.

93

An unknown aij is said to be covered (by S or W) if it can be uniquely solved
in

Ŝi
T
A(i,Ji)

T = B(i, :)T or A(Ij , j)Ŵj = C(:, j).

where Ŝi(Ŵj) is the submatrix of S(W) corresponding to the nonzero entries
in row i (column j) indicated by Ji(Ij). The matrices S and W are said to
constitute a cover for A if each aij 6= 0 is covered. A cover is a direct cover if A
can be determined directly from the cover. Given a mapping Φ : V 7→ S ∪W
where S = {S1,S2, . . . ,Sp},W = {W1,W2, . . . ,Wq} we define matrices S ∈
{0, 1}n×p and W ∈ {0, 1}m×q,

S(:, k) =
∑

j

ej ,Sk = Φ(vij) and W (:, l) =
∑

i

ei,Wl = Φ(i).

The mapping Φ : V 7→ S ∪ W is said to yield a cover for A if the matrices

S and W constitute a cover for A. Denote by uij
≥1∼ ui′j′ a path of length at

least 1.

Theorem 2 Let GP(A) = (V,E) be the pattern graph associated with A.
Define the mapping Φ : V 7→ S ∪ W where S = {S1,S2, . . . ,Sp},W =
{W1,W2, . . . ,Wq} such that for each vij ∈ V,

EITHER
(1) (a) vij

≥1∼ vij′, j 6= j′ implies k 6= k′ where Φ(vij) = Sk,Φ(vij′) = Sk′ and

(b) vij
≥1∼ vij′

≥1∼ vi′j′, i 6= i′, j 6= j′ implies k 6= k′ where Φ(vij) =
Sk,Φ(vi′j′) = Sk′

OR
(2) (a) vij

≥1∼ vi′j, i 6= i′ implies k 6= k′ where Φ(vij) = Wk,Φ(vi′j) = Wk′ and

(b) vij
≥1∼ vi′j

≥1∼ vi′j′, i 6= i′, j 6= j′ implies k 6= k′ where Φ(vij) =
Wk,Φ(vi′j′) = Wk′.

Then matrices S and W constitute a direct cover for A.

One of the strengths of the pattern graph model is that the result given above
can be specialized to unidirectional and column segments determinations with-
out changing the graph.

The sparsity pattern of matrix A can be efficiently represented using two
arrays: array colind that stores the column indices of the nonzero entries
row-by-row, and array rowptr that contains the index of the first nonzero ele-
ment of each row of the sparse matrix stored in colind array. For easy access
to the adjacent vertices sparsity pattern of AT is explicitly stored using anal-
ogous arrays rowind and colptr . This storage is of order Θ(max(n,m, nnz))
which meets the design strategies for sparse linear algebra implementation [5].
Next we consider the computations on this data structure relevant to algo-
rithms for Problem JMDP. In many graph coloring heuristics on static graphs
a frequently executed operation is to find the neighbors of a given vertex vj .

94

Assuming vj a column vertex this information is obtained easily as

{{vj, vi}|i = rowind(k), k = colptr(j) : colptr(j+1)-1 } .

This computation can be performed independent of the graph models dis-
cussed above. Further, the array representation ensures better cache perfor-
mance and the computational cost of the operation is proportional to the size
of the data accessed and the number of nonzero arithmetic operations. Clearly,
it is not necessary to compute the intersection graphs explicitly as advocated
in [3]. Indeed, almost all the well-known coloring heuristics for JMDP can be
implemented in time proportional to

∑m
i=1 ρ

2
i where ρi denotes the number of

nonzero entries in row i of A. As an indication of the efficiency of the data
structure proposed here we report in the table below the timing experiments
for incidence degree order (IDO) coloring where ot and ct represent order-

Matrix m n nnz ColPack [4] DSJM

ot ct ot ct

lpcreb 9648 77137 260785 13.9 1.49 2.46 1

lpcred 8926 73948 246614 14.79 1.48 2.46 1.01

lpfit2d 25 10524 129042 64.19 24.94 16.32 17.2

lpken18 105127 154699 358171 15.92 0.63 1.47 0.48

lposa07 1118 25067 144812 161.76 28.34 40.84 18.35

ing and coloring times, respectively. ColPack implements IDO coloring with
partial distance-2 coloring scheme on bipartite graph while DSJM implements
IDO coloring using the data structure described here using column intersection
graph. The times reported here do not include data structure set up times.
The sparse matrices are obtained from University of Florida Sparse Matrix
Collection.

References

[1] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM J. Numer. Anal., 20(1):187–209, 1983.

[2] T. F. Coleman and A. Verma. The efficient computation of sparse Jacobian
matrices using automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–
1233, 1998.

[3] A. H. Gebremedhin, F. Manne, and A. Pothen. What Color Is Your Jacobian?
Graph Coloring For Computing Derivatives. SIAM Review, 47(4):629–705.

[4] A. H. Gebremedhin, A. Tarafdar, D. Nguyen, and A. Pothen. ColPack.
http://www.cs.odu.edu/~dnguyen/dox/colpack/html/ (accessed May 2009)

[5] J. R. Gilbert, S. Reinhardt, and V. Shah. High-performance graph algorithms
from parallel sparse matrices. In B. K̊agström, E. Elmroth, J. Dongarra, and
J. Wasniewski, editors, PARA, volume 4699 of Lecture Notes in Computer
Science, pages 260–269. Springer, 2006.

95

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[7] A. Griewank, Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Appl.
Math. SIAM, Philadelphia, Penn., 2008.

[8] Shahadat Hossain and Trond Steihaug. Graph coloring in the estimation
of sparse derivative matrices: Instances and applications, Discrete Applied
Mathematics, 156(2):280–288, 2008.

[9] A. S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows
and columns. Optimization Methods and Software, 10:33–48, 1998.

96

G. Jäger

Computer Science Institute, University of Kiel, D-24118 Kiel, Germany

An Effective SAT Encoding for Magic

Labeling

Key words: Magic Labeling, Boolean Satisfiability, Backtracking.

1 Introduction

This work presents a Boolean satisfiability (SAT) encoding for a special problem
from combinatorial optimization. In the last years much progress has been made
in the optimization of practical SAT solvers (see the SAT competition [5]). This
has made SAT encodings for combinatorial problems highly attractive. In this
work we propose an encoding for the combinatorial problemMagic Labeling which
has important applications in the field of wireless networks [4]. It is defined as
follows. Let an undirected, unweighted graph G = (V,E) be given with vertex
set V and edge set E, where |V | = n and |E| = m. A labeling is a one-to-one
mapping λ : V ∪E → {1, 2, . . . , m+n}. Define the weight ω(e) of an edge e ∈ E
as the sum of the label of e and of the labels of its two endpoints. An edge-magic
total labeling (EMTL) is a labeling λ for which a constant h ∈ N exists such
that ω(e) = h for each edge e ∈ E. Similarly, define the weight ω(v) of a vertex
v ∈ V as the sum of the label of v and of the labels of all edges incident to v.
A vertex-magic total labeling (VMTL) is a labeling λ for which a constant k ∈ N
exists such that ω(v) = k for each vertex v ∈ V . Finally, a totally magic labeling
(TML) is a labeling λ for which (not necessarily equal) constants h, k ∈ N exist
such that λ is edge-magic with constant h and vertex-magic with constant k. h
and k are called magic constants. A vertex v ∈ V and an edge e ∈ E are denoted
neighboring, if e is incident to v. Note that different EMTLs exist for the same
graph, and the same holds for VMTLs. Surveys of results for magic graphs are
given in [4]. We consider the following three problems for a given graph:
(1) Does an EMTL exist with given magic constant h ∈ N?
(2) Does a VMTL exist with given magic constant k ∈ N?
(3) Does a TML exist with given magic constants h, k ∈ N?

The obvious method for these problems would be to use a backtracking approach.
In Section 2 we propose a general algorithm based on a SAT encoding and extend

Email address: gej@informatik.uni-kiel.de (G. Jäger).

CTW2010, University of Cologne, Germany. May 25-27, 2010

the encoding and the resulted algorithm to the following problems:
(4) Enumerate all EMTLs with given magic constant h ∈ N?
(5) Enumerate all VMTLs with given magic constant k ∈ N?
(6) Enumerate all TMLs with given magic constants h, k ∈ N?
In Section 3 we compare the performance of this SAT based algorithm and of a
backtracking algorithm for the problems (1) and (2).

2 SAT Encoding for Magic Labeling

In this section we consider the problems (1) to (3). Let G = (V,E) with |V | =
n, |E| = m and r := n + m. For our convenience, we define a fixed order-
ing on the set V ∪ E by the numbers 1, 2, . . . , n + m, i.e., each number of
{1, 2, . . . , n + m} represents an edge or a vertex of the graph. For the encod-
ing we use r2 Boolean variables xi,j with 1 ≤ i, j ≤ r, where we set xi,j =



True, if edge/vertex i receives label j

False, if edge/vertex i does not receive label j

Labeling Clauses: For receiving a feasible labeling we need the following con-
ditions. First each edge/vertex needs to have exactly one label. This leads to
the condition that for i = 1, 2, . . . , r exactly one j ∈ {1, 2, . . . , r} exists with
xi,j = True. Second each label has to be used by exactly one edge/vertex. This
leads to the condition that for j = 1, 2, . . . , r exactly one i ∈ {1, 2, . . . , r} ex-
ists with xi,j = True. All 2r restrictions have the same structure, namely that
exactly one of the r involved Boolean variables is set to True and the rest to
False. To represent this, we introduce 2r2 auxiliary variables y1, y2, . . . , y2r2,
with r y’s for one restriction. W.l.o.g., consider the first restriction, which con-
tains the Boolean variables x1,1, x1,2, . . . , x1,r, and the corresponding auxiliary
variables y1, y2, . . . , yr. For 1 ≤ k ≤ r we use yk to represent that at least one
of x1,1, x1,2, . . . , x1,k is True. Precisely, the y variables are defined as y1 = x1,1

or equivalently (¬x1,1 ∨ y1) ∧ (x1,1 ∨ ¬y1), and yk = x1,k ∨ yk−1 or equivalently
(yk ∨¬x1,k)∧ (yk ∨¬yk−1)∧ (¬yk ∨x1,k ∨ yk−1) for k = 2, 3, . . . , r. In addition, we
need to enforce that only one x1,i with 1 ≤ i ≤ r can be True. This means, if
x1,k is True, none of the x1i for 1 ≤ i < k ≤ r can be True. This is formulated
as ¬yk−1 ∨ ¬x1k for k = 2, . . . , r. Finally yr must be True.
Magic Clauses: Furthermore we have to add clauses which ensure that the con-
ditions of EMTL/ VMTL/TML are fulfilled. The following two conditions occur:
EMTL/TML: Set l := 2. For given h ∈ N and a given edge the sum of l+1 labels
(namely the label of the edge and of its l endpoint vertices) equals h.
VMTL/TML: For given k ∈ N and a given vertex with degree l ∈ N the sum of
l + 1 labels (namely the label of the vertex and of its l incident edges) equals k.
Observe that both conditions have the following structure: For given constants
c, l ∈ N the sum of l+1 labels equals c. For l ∈ N let W be the set containing all
possible l-tuples −→w = (w1, w2, . . . , wl) with wi ∈ {1, 2, . . . , r} for 1 ≤ i ≤ l and
wi 6= wj for 1 ≤ i < j ≤ l. Now let a constant c ∈ N be given and an edge or

98

vertex f with corresponding l ∈ N, i.e., if f is an edge, then l = 2, and otherwise
l is the degree of f . We want to fulfill the magic condition for f . This means that
the sum of the label of f and of its neighboring elements is c. Let f1, f2, . . . , fl be
the neighboring elements of f . For this l compute the set W (which is easy for
small l) and choose an arbitrary element −→w ∈ W with w :=

∑l
i=1 wi. Then label

f1, f2, . . . , fl by w1, w2, . . . , wl, and consider the four cases:
Case 1: i ∈ {1, 2, . . . , l} exists with c−w = wi;Case 2: w ≥ c;Case 3: w < c−r;
Case 4: Otherwise.
As all labels are different and are contained in the set {1, 2, . . . , r}, it is clear that
for the Cases 1, 2, or 3 no labeling of f exists such that the sum of the labels of
f, f1, f2, . . . , fl is c. In these cases we add the clause ¬xf1,w1∨¬xf2,w2∨· · ·∨¬xfl,wl

meaning that labeling f1, f2, . . . , fl by w1, w2, . . . , wl is not possible. For Case 4
such a labeling is possible, but only if f is labeled with c− w. This leads to the
clause ¬xf1,w1 ∨¬xf2,w2 ∨ · · · ∨¬xfl ,wl

∨xf,c−w. Thus for each
−→w ∈ W we have an

additional clause. Clearly, the number of possible sums and therefore the number
of magic clauses becomes rather large, if we consider VMTLs or TML for dense
graphs. In these cases the resulted algorithm has bad performance (see Section
3).
Enumerating All Magic Labelings: The SAT based representation allows
us to enumerate all magic labelings using a technique of Jin, Han, Somenzi [3],
which is applicable to general SAT instances. The main idea of this technique is
to add new clauses to a SAT model with purpose to enumerate all SAT solutions.
In our case we start with the presented SAT encoding. If this SAT encoding is
satisfiable, we receive a first magic labeling λ : {1, 2, . . . , r} → {1, 2, . . . , r}. This
means that in the SAT solution exactly the Boolean variables x1,λ(1), x2,λ(2), . . . ,
xr,λ(r) are set to True. Then we explicitly forbid this magic labeling by adding
the new clause ¬x1,λ(1) ∨¬x2,λ(2) ∨ · · · ∨¬xr,λ(r) to the current SAT instance. For
the updated SAT instance there are two possibilities. If the instance is satisfiable,
this leads to another magic labeling, as the first one is not allowed. If not, the
first magic labeling was the only one. This process can be iterated, until all or a
determined number of magic labelings has been found.

3 Experimental Results

In this section we compare our algorithm (called Sat-Magic) with a natural
backtracking algorithm (called Back-Magic). In Back-Magic all vertices and
edges are labeled in a fixed order, and if a partial labeling makes a magic la-
beling impossible, then a backtracking step occurs, i.e., a previous labeling of
a edge/vertex is changed, and the search continues at this step. All algorithms
have been implemented in C++, where we make use of an effective SAT solver
implemented by Eén and Sörensson, called MiniSat [2]. The experiments were
carried out on a PC with an Athlon 1900MP CPU with 2GB of memory. We test
random graphs with size n = 10, 15, where p = 10%, 20%, 30%, 40% edges are

99

Size n 10 15

Type EMTL VMTL EMTL VMTL

Density p (%) 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Suc. Back (%) 40 20 10 0 100 0 0 0 0 0 0 0 0 0 0 0

Suc. Sat (%) 100 100 100 80 100 100 0 0 80 60 50 0 100 0 0 0

Table 1
Comparison of Sat Magic and Back Magic

chosen randomly and uniformly distributed from all possible n · (n − 1)/2 ones.
As only 3 connected TMLs are known [1], we do not consider TMLs, but only
EMTLs and VMTLs. Note that for each single instance we can easily compute
a lower bound lb ∈ N and an upper bound ub ∈ N for possible magic constants.
Then we choose min{10, ub− lb + 1} values of this interval [lb, ub] and for each
value we receive a single instance of the form (1) or (2). Thus we have 16 = 2 ·2 ·4
test classes, where each test class consists of up to 10 single instances.
In Table 3 for both algorithms and for each test class a percentage value is given
describing how many instances of this test class can be solved in 600 seconds.
The results clearly demonstrate the superiority of Sat-Magic in comparison to
Back-Magic. As expected, Sat-Magic behaves rather bad for VMTLs with
large density.

References

[1] A. Baker, J. Sawada: Magic Labelings on Cycles and Wheels. In B. Yang, D.-Z. Du,
C.A. Wang (Eds.): Proc. 2nd Annual International Conference on Combinatorial
Optimization and Applications (COCOA). Lecture Notes in Comput. Sci. 5165,
361-373, 200

[2] N. Eén, N. Sörensson: An Extensible SAT-Solver. In E. Giunchiglia, A. Tacchella
(Eds.): Proc. 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT). Lecture Notes in Comput. Sci. 2919, 502-518, 2003.

[3] H. Jin, H. Han, F. Somenzi: Efficient Conflict Analysis for Finding All Satisfying
Assignments of a Boolean Circuit. In N. Halbwachs, L.D. Zuck (Eds.): Proc.
11th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Comput. Sci. 3440, 287-300, 2005.

[4] W.D. Wallis: Magic Graphs. Birkhäuser, Boston, 2001.

[5] International SAT Competition: “http://www.satcompetition.org/”.

100

New Fully Polynomial Time Approximation

Scheme for the makespan minimization with

positive tails on a single machine with a fixed

non-availability interval

Imed Kacem

LITA, Universit Paul Verlaine–Metz, Ile du Saulcy. Metz 57000 cedex, France.
(Email address: kacem@univ-metz.fr).

Key words:
scheduling, non-availability constraint, approximation, makespan

1 Introduction

The studied problem (P) can be formulated as follows. We have to schedule
a set J of n jobs on a single machine, where every job j has a processing
time pj and a tail qj. The machine can process at most one job at a time
and it is unavailable between T1 and T2 (i.e., [T1, T2) is a forbidden interval).
Preemption of jobs is not allowed (jobs have to be performed under the non-
resumable scenario). All jobs are ready to be performed at time 0. With no loss
of generality, we consider that all data are integers and that jobs are indexed
according to Jackson’s rule [1] (i.e., jobs are indexed in nonincreasing order
of tails). Therefore, we assume that q1 ≥ q2 ≥ ... ≥ qn. The consideration of
tails is motivated by the large set of scheduling problems such that jobs have
delivery times after their processing. As an example, it is well-known that
the minimization of makespan with tails is equivalent to the minimization of
the maximum lateness with due dates [2]. Let Cj (S) denote the completion
time of job j in a feasible schedule S for the problem and let ϕS(P) be the
makespan yielded by schedule S for instance I of (P):

ϕS(I) = max
1≤j≤n

(Cj (S) + qj) (1)

The aim is to find a feasible schedule S by minimizing the makespan. Due
to the dominance of Jackson’s order, an optimal schedule is composed of two
sequences of jobs scheduled in nondecreasing order of their indexes.

CTW2010, University of Cologne, Germany. May 25-27, 2010

If all the jobs can be inserted before T1, the instance studied (I) has obviously
a trivial optimal solution obtained by Jackson’s rule. We therefore consider
only the problems in which all the jobs cannot be scheduled before T1.

In the remainder of this paper ϕ∗(I) denotes the minimal makespan for in-
stance I.

This type of problems has been studied in the literature under various criteria
(a sample of these works includes Lee [7], Kacem [4], Kubzin and Strusevich [6],
Qi et al. [8]-[9], Schmidt [10], He et al. [3]). However, few papers studied the
problem we consider in this paper. Lee [7] explored the Jackson’s sequence
JS and proved that its deviation to the optimal makespan cannot exceed
max1≤j≤n (pj), which is equivalent to state that ϕJS(I) ≤ 2ϕ∗(I). Recently,
Yuan et al. developed an interesting PTAS for the studied problem [11]. That
is why this paper is a good attempt to design more efficient approximation
heuristics and approximation schemes to solve the studied problem.

2 New FPTAS

Now, let describe our FPTAS. It uses a simplification technique based on
merging small jobs [5]. First, we simplify the instance I as follows. Given an
arbitrary ε > 0, we split the interval [0,maxj∈J{qj}] in 1/ε equal lenght inter-
vals and we round up every tail qj to the next multiple of εq (q = maxj∈J{qj}).
Then, we obtain a new instance I ′ with no (1+ε)-loss. Thus, J can be divided
into 1/ε subsets J(k) (1 ≤ k ≤ 1/ε) where jobs in J(k) have identical tails of
kεq. The second modification consists in reducing the number of small jobs in
every subset J(k). Small jobs are those having processing times < εP/2 where
P = p1 + p2 + ... + pn. The reduction is done by merging the small jobs in
each J(k) so that we obtain new greater jobs having processing times between
εP/2 and εP . At most, for every subset J(k), a single small job remains. We
show that this reduction cannot increase the optimal solution value by more
than (1+ε)-factor. We re-index jobs according to nondecreasing order of their
tails. The new instance we obtain is denoted as I ′′. Clearly, the number of
jobs remaining in the simplified instance I ′′ is less than 3/ε.

Our FPTAS is based on two steps. First, we use the Jackson’s sequence JS
obtained for the initial instance I. Then, we apply a modified dynamic pro-
gramming algorithm APS ′

ε on instance I ′′. The main idea of APS ′
ε is to remove

a special part of the states generated by a dynamic programming algorithm
(See Kacem [4]). Therefore, the modified algorithm becomes faster and yields
an approximate solution instead of the optimal schedule.

Given an arbitrary ε > 0, we define n = min{n, 3/ε}, ω1 =
⌈
4n
ε

⌉
, ω2 =

⌈
2n2

ε

⌉
,

102

δ1 =
ϕJS(I)

ω1
and δ2 =

T1

ω2
.

We split [0, ϕJS (I)) into ω1 equal subintervals I1m = [(m− 1)δ1, mδ1)1≤m≤ω1
.

We also split [0, T1) into ω2 equal subintervals I2s = [(s− 1)δ2, sδ2)1≤s≤ω2
of

length δ2. Moreover, we define the two singletons I1ω1+1 = {ϕJS (I)} and

I2ω2+1 = {T1}. Our algorithm APS ′
ε generates reduced sets X#

k of states [t, f]
where t is the total processing time of jobs assigned before T1 in the associated
partial schedule and f is the makespan of the same partial schedule. It can be
described as follows:

Algorithm APS ′
ε

(i). Set X#
0 = {[0, 0]}.

(ii). For k ∈ {1, 2, 3, ..., n},
For every state [t, f] in X#

k−1:

1) Put
[
t,max

(
f, T2 +

∑k
i=1 pi − t+ qk

)]
in X#

k

2) Put [t+ pk,max (f, t+ pk + qk)] in X#
k if t+ pk ≤ T1

Remove X#
k−1

Let [t, f]m,s be the state in X#
k such that f ∈ I1m and t ∈ I2s with the

smallest possible t (ties are broken by choosing the state of the smallest
f).

Set X#
k =

{
[t, f]m,s |1 ≤ m ≤ ω1 + 1, 1 ≤ s ≤ ω2 + 1

}
.

(iii). ϕAPS′
ε
(I) = min[t,f]∈X#

n
{f}.

Theorem 1 Given an arbitrary ε > 0, algorithm APS ′
ε yields an output

ϕAPS′
ε
(I ′′) such that:

ϕAPS′
ε
(I ′′)− ϕ∗ (I ′′) ≤ εϕ∗ (I ′′) . (2)

The proof will be presented at the conference.

Lemma 2 Given an arbitrary ε > 0, algorithm APS ′
ε can be implemented in

O (n logn +min{n, 1/ε}4/ε2) time.

The schedule obtained by APS ′
ε for instance I ′′ can be easily converted into

a feasible one for instance I. This can be done in O (n) time. ¿From the
previous lemma and theorem, the main result is proved and the following
corollary holds.

Corollary 3 Algorithm APS ′
ε is an FPTAS and it can be implemented in

O (n logn +min{n, 1/ε}4/ε2) time.

103

3 Conclusion

In this paper, we considered the non-resumable case of the single machine
scheduling problem with a fixed non-availability interval. Our aim is to min-
imize the makespan when every job has a positive tail. We showed that the
problem has an FPTAS (Fully Polynomial Time Approximation Scheme). Such
an FPTAS is strongly polynomial. The obtained results outperform the pre-
vious polynomial approximation algorithms for this problem.

References

[1] Carlier, J., 1982. The one-machine sequencing problem. European Journal of
Operational Research 11, 42-47.

[2] Dessouky, M.I., Margenthaler, C.R., 1972. The one-machine sequencing problem
with early starts and due dates. AIIE Transactions 4:3, 214-222.

[3] He, Y., Zhong, W., Gu, H., 2006. Improved algorithms for two single machine
scheduling problems. Theoretical Computer Science 363, 257-265.

[4] Kacem, I., 2009. Approximation algorithms for the makespan minimization with
positive tails on a single machine with a fixed non-availability interval. Journal
of Combinatorial Optimization 17:2, 117-133.

[5] Kacem, I., Kellerer, H., 2010. No-Wait Scheduling of a Single-Machine to
Minimize the Maximum Lateness, Proceedings of the 24 th Annual Conference
of the Belgian Operational Society, Liège, January 28-29.

[6] Kubzin, M.A., Strusevich, V.A., 2006. Planning machine maintenance in two
machine shop scheduling. Operations Research 54, 789-800.

[7] Lee, C.Y., 1996. Machine scheduling with an availability constraints. Journal
of Global Optimization 9, 363-384.

[8] Qi, X., 2007. A note on worst-case performance of heuristics for maintenance
scheduling problems. Discrete Applied Mathematics 155, 416-422.

[9] Qi, X., Chen, T., Tu, F., 1999. Scheduling the maintenance on a single machine.
Journal of the Operational Research Society 50, 1071-1078.

[10] Schmidt, G., 2000. Scheduling with limited machine availability. European
Journal of Operational Research 121, 1-15.

[11] Yuan, J.J., Shi, L., and Ou, J.W., 2008. Single machine scheduling with
forbidden intervals and job delivery times. Asia-Pacific Journal of Operational
Research 25:3, 317-325.

104

On Enumerating All Maximal Bicliques of

Bipartite Graphs

Enver Kayaaslan

enver@cs.bilkent.edu.tr

Key words: bipartite graph, biclique, maximal biclique

1 Introduction

Enumerating all maximal bicliques of a bipartite graph has two main contri-
butions to literature: First, we can use all maximal bicliques to find minimum
number of bicliques covering a subset of edges or vertices for given bipartite
graph. This problem is referred as Minimum Biclique Cover (MBC) Problem
and dates back to the study of Orlin [5]. A recent work by Cornaz and Fonlupt
deals with MBC problem for general graphs and useful references can be found
therein [3]. Secondly, Agarwal et al. show that extracting all maximal bicliques
can be used for compression [1].

In this work, we focus on finding all maximal bicliques in general bipartite
graphs. In this point of view, this work can be considered as the specified
version of study by Alexe et. al. [2] where the authors try to solve maximal
biclique generation problem (MBGP) which is the problem of enumerating all
maximal bicliques in simple graphs. Here, we present some theoretical results
including a sufficient and necessary condition for a maximal biclique in a
bipartite graph as well as a practical algorithm for generating all maximal
bicliques of a given bipartite graph.

2 Theoritical Results

A bipartite graph B = (X, Y, E) is a graph, where the vertices can be divided
into two disjoint sets X and Y such that every edge eij ∈ E connectes a
vertex in X to one in Y . A biclique (Sx, Sy) of a bipartite graph B is a
complete bipartite subgraph of B induced by vertex set Sx∪Sy . The neighbor
set Ny(xi) of a vertex xi ∈ X is defined as the set of vertices yj such that

CTW2010, University of Cologne, Germany. May 25-27, 2010

there is an edge eij ∈ E , i.e., Ny(xi) = {yj ∈ Y : (xi, yj) ∈ E} . Similarly,
Nx(yj) = {xi ∈ X : (xi, yj) ∈ E} . The empty biclique (∅, ∅) is simply denoted
as ∅ .

Definition 1 (Maximal Biclique) Given a bipartite graph B = (X, Y, E),
a biclique (Sx, Sy) is a maximal biclique of B if no proper superset of (Sx, Sy)
is a biclique, i.e., there exists no biclique (S ′

x, S
′
y) 6= (Sx, Sy) such that Sx ⊆ S ′

x

and Sy ⊆ S ′
y .

For the sake of simplicity, pair of sets (Sx, {yj}) and ({xi}, Sy) are denoted
as (Sx, yj) and (xi, Sy), respectively.

Definition 2 (Consensus Set) Given a bipartite graph B = (X, Y, E), for
a subset Sx ⊆ X (Sy ⊆ Y) the consensus set Py(Sx) (Px(Sy)) is defined as
the intersection of neighbor set of each vertex xi ∈ Sx (yj ∈ Sy),i.e,

Py(Sx) =
⋂

xi∈Sx

Ny(xi) (1)

By definition, Px(∅) = Py(∅) = ∅.

Note that this is equaivalent to Py(Sx) = {yj ∈ Y : (Sx, yj) is biclique} and
similarly Px(Sy) = {xi ∈ X : (xi, Sy) is biclique } .

Theorem 1 (Sx, Sy) 6= ∅ is a maximal biclique ⇔ Sy = Py(Sx) and Sx =
Px(Sy).

Proof: Let (Sx, Sy) 6= ∅ be a biclique and so Sx ⊆ Px(Sy) and Sy ⊆ Py(Sx).
By defintion of maximality, Sx, Sy is a maximal biclique if and only if there
exists no yj ∈ Y/Sy such that (Sx, yj) is a biclique and similarly there exists
no xi ∈ X/Sx such that (xi, Sy) is biclique. This is equivalent to that there
exists no yj ∈ Y/Sy such that yj ∈ Py(Sx) and there exists no xi ∈ X/Sx

such that xi ∈ Px(Sy). Equivalently Sy = Py(Sx) and Sx = Px(Sy). 2.

Lemma 1 For any Sy ⊆ Y , Sy ⊆ Py(Px(Sy)). Similarly, for any Sx ⊆ X ,
Sx ⊆ Px(Py(Sx)).

Proof: Consider a vertex yj ∈ Sy . Since (Px(Sy), Sy) is biclique, (Px(Sy), yj) is
also biclique. Thus, yj ∈ Py(Px(Sy)) which concludes that Sy ⊆ Py(Px(Sy)).
Similar proof can be conducted for Sx ⊆ Px(Py(Sx)). 2

Theorem 2 For any Sy ⊆ Y such that Px(Sy) 6= ∅, (Px(Sy), Py(Px(Sy)))
is a maximal biclique. Similarly, for any Sx ⊆ X such that Py(Sx) 6= ∅,
(Px(Py(Sx)), Py(Sx)) is a maximal biclique.

Proof: Let Sy be a subset of Y such that Px(Sy) and let S̃y denote Py(Px(Sy)).
Consider a vertex xi ∈ Px(S̃y). Then, (xi, S̃y) is biclique. Since Sy ⊆ S̃y ,

106

(xi, Sy) is also biclique. Thus xi ∈ Px(Sy) which concludes that Px(Sy) ⊇
Px(S̃y). Since Px(Sy) ⊆ Px(S̃y), Px(Sy) = Px(S̃y). Since both Py(Px(Sy)) = S̃y

and Px(Sy) = Px(S̃y), (Px(Sy), S̃y) is a maximal biclique. Similar proof can
be conducted for maximality of biclique (Px(Py(Sx)), Py(Sx)). 2

3 Algorithm

Theoretical results suggest that it is sufficient to enumerate on the consensus
sets, in order to find all maximal bicliques. Therefore we find all consensus
X subsets of bipartite graph B = (X, Y, E). The algorithm requires only the
bipartite graph B . Then we initialize a set of consensus X subsets S with
neighbor sets of every vertex yj ∈ Y . Concurrently, we hold a priority queue
Q which works in a FIFO manner, and it is also initialized by the same set of
consensus X subsets. We iteratively grow the set S as follows. At each itera-
tion, we select an unselected consensus set Sx from queue Q. For each vertex
yj ∈ Y which is not in the consensus set of Sx , we construct a set Snew by the
intersection of Sx and neighbor set N(yj). Snew corresponds to the consensus
set of Py(Sx)∪{yj} . We do not consider a vertex in Py(Sx), because for such a
vertex, the intersection will result again Sx which wouldn’t be a new consen-
sus set in S . If Snew is a new consensus set in S , we insert Snew to S . We also
enqueue it to priority queue Q in order to expand new consensus sets based
on Snew . The iterations terminate whenever there remains no consensus set
to generate new ones. By the termination, we compute the maximal bicliques
by taking pairs (Sx, Py(Sx)) for each subset Sx ∈ S .

Algorithm 1 FIND-ALL-MAXIMAL Algorithm

Require: Bipartite graph B = (X, Y, E)
S ← {Nx(yj) : yj ∈ Y }
Q← S
while Q 6= ∅ do

Sx ← DEQUEUE(Q)
for each yj ∈ Y/Py(Sx) do

Snew ← Sx ∩N(yj)
if Snew 6∈ S then
S ← S ∪ {Snew}
ENQUEUE(Q, Snew)

end if
end for

end while
Cmax = {(Sx, Py(Sx)) : Sx ∈ S}
return Cmax

For each maximal biclique we check for at most |Y | new bicliques. With a naive

107

implementation, the checking procedure can be done in polynomial time on
number of total maximal bicliques and number of vertices. Thus, the whole
procedure runs in polynomial-time in total of input and output size with a
naive implementation which conludes that FIND-ALL-MAXIMAL is a total
polynomial algorithm [4] for the problem of enumerating all maximal bicliques
of a bipartite graph.

4 Conclusion

In this work, we study the problem of enumerating all maximal bicliques in
a given bipartite graphs. We devised a necessary and sufficient condition for
a maximal biclique in bipartite graph which happened to be useful for enu-
meration. As well as, we constructed an algorithm for generating all maximal
bicliques of a bipartite graph which runs in total polynomial time.

References

[1] P. K. Agarwal, N. Alon, B. Aranov, and S. Suri, Can visibility graphs
be represented compactly?, Discrete and Computational Geometry, 12 (1994),
pp. 347 – 365.

[2] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and
B. Simeone, Consensus algorithms for the generation of all maximal bicliques,
Discrete Applied Mathematics, 145 (2004), pp. 11 – 21. Graph Optimization IV.

[3] D. Cornaz and J. Fonlupt, Chromatic characterization of biclique covers,
Discrete Mathematics, 306 (2006), pp. 495 – 507.

[4] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating
all maximal independent sets, Information Processing Letters, 27 (1988), pp. 119
– 123.

[5] J. Orlin, Contentment in graph theory: Covering graphs with cliques,
Proceedings of the Koninklijke Nederlandse, (1977), pp. 406–424.

108

A tight analysis of
Brown-Baker-Katseff sequences

for online strip packing

W. Kern and J.J. Paulus

1 Abstract

In the two-dimensional strip packing problem a number of rectangles have to be packed
without rotation or overlap into a strip such that the height of the strip used is minimum.
The width of the rectangles is bounded by 1 and the strip has width 1 and infinite height.
Baker, Coffman and Rivest [1] show that this problem is NP-hard.

We study the online version of this packing problem. In the online version the rectangles are
given to the online algorithm one by one from a list, and the next rectangle is given as soon
as the current rectangle is irrevocably placed into the strip. To evaluate the performance
of an online algorithm we employ competitive analysis. For a list of rectangles L, the
height of a strip used by online algorithm A and by the optimal solution is denoted by
A(L) and OPT (L), respectively. The optimal solution is not restricted in any way by the
ordering of the rectangles in the list. Competitive analysis measures the absolute worst-case
performance of online algorithm A by its competitive ratio supL{A(L)/OPT (L)}.
Regarding the upper bound on the competitive ratio for online strip packing, recent ad-
vances have been made by Ye, Han and Zhang [6] and Hurink and Paulus [4]. Indepen-
dently they present an online algorithm with competitive ratio 7/2+

√
10 ≈ 6.6623, that is

a modification of the well known shelf algorithm. We refer to these two papers for a more
extensive overview of the literature.

In the early 80’s, Brown, Baker and Katseff [2] derived a lower bound ρ ≥ 2 on the
competitive ratio of any online algorithm by constructing certain (adversary) sequences in
a fairly straightforward way. These sequences were further studied by Johannes [5] and
Hurink and Paulus [3], who derived improved lower bounds of 2.25 and 2.43, resp. (Both
results are computer aided and presented in terms of online parallel machine scheduling, a
closely related problem.) The paper of Hurink and Paulus [3] also presents an upper bound
of ρ ≤ 2.5 for packing such “Brown-Baker-Katseff sequences” . The purpose of our present
paper is to propose a potential function approach that allows us to close the gap between
2.43 and 2.5. We present a tight analysis, showing that Brown-Baker-Katseff sequences

109

can be packed online with competitive ratio ρ = 3/2+
√
33/6 and that this is best possible.

As a byproduct we obtain a new lower bound ρ ≈ 2.457 for online strip packing.

Acknowledgment

Part of this research has been funded by the Dutch BSIK/BRICKS project.

References

[1] Baker B.S., Coffman E.G. and Rivest R.L. (1980). Orthogonal packings in
two-dimensions. SIAM Journal on Computing 9:846-855.

[2] Brown D.J., Baker B.S. and Katseff H.P. (1982). Lower bounds for on-line
two-dimensional packing algorithms. Acta Informatica 18:207-225.

[3] Hurink J.L. and Paulus J.J. (2008). Online scheduling of parallel jobs on two
machines is 2-competitive. Operations Research Letters 36:51-56.

[4] Hurink J.L. and Paulus J.J. (2008). Online algorithm for parallel job scheduling
and strip packing. Lecture Notes in Computer Science (WAOA 2007) 4927:67-74.

[5] Johannes B. (2006) Scheduling parallel jobs to minimize the makespan. Journal of
Scheduling 9:433-452.

[6] Ye D., Han X. and Zhang G. (2009) A note on online strip packing. Journal of
Combinatorial Optimization, in press, doi:10.1007/s10878-007-9125-x.

110

On a Stochastic Knapsack Problem

Stefanie Kosuch and Marc Letournel and Abdel Lisser

Laboratoire de recherche en Informatique, Université Paris Sud
91405 Orsay Cedex, France

Key words: stochastic knapsack, expectation constraint, stochastic gradient
method, Arrow-Hurwicz

1 Introduction

The deterministic knapsack problem is a well known and well studied NP-hard
combinatorial optimization problem. It consists in filling a knapsack with items
out of a given set such that the weight capacity of the knapsack is respected
and the total reward maximized. For a review of references on the stochas-
tic knapsack problem, stochastic gradient algorithms and branch-and-bound
methods see [4]. In the deterministic problem, all parameters (item weights,
rewards, knapsack capacity) are known (deterministic). In the stochastic coun-
terpart, some (or all) of these parameters are assumed to be random, i.e. not
known at the moment the decision has to be made.
In this paper, we study the stochastic knapsack problem with expectation
constraint. The item weights are assumed to be independently normally dis-
tributed. We solve the relaxed version of this problem using a stochastic gra-
dient algorithm in order to provide upper bounds for a branch-and-bound
framework. Two approaches to estimate the needed gradients are applied, one
based on Integration by Parts and one using Finite Differences. Finite Differ-
ences is a robust and simple approach with efficient results despite the fact
that the estimated gradients are biased, meanwhile Integration by Parts is
based upon a more theoretical analysis and permits to enlarge the field of
applications.

2 Mathematical formulations

We consider a stochastic knapsack problem of the following form: Given a set
of n items. Each item has a weight that is not known in advance and the

CTW2010, University of Cologne, Germany. May 25-27, 2010

decision of which items to choose has to be made without the exact knowl-
edge of their weights. Therefore, we handle the weights as random variables
and assume that weight χi of item i is independently normally distributed
with mean µi > 0 and standard deviation σi. Furthermore, each item has a
fix reward per weight unit ri > 0. We denote by χ, µ, σ and r the corre-
sponding n-dimensional vectors. The aim is to maximize the expected total
gain E[

∑n
i=1 riχixi]. In addition, we assume that the knapsack problem has a

fixed weight capacity c > 0. In this paper, we solve the following expectation
constrained knapsack problem:

Expectation Constrained Knapsack Problem (ECKP)

max
x∈{0,1}n

E
[
n∑

i=1

riχixi

]
(1)

s.t. E [HR+(c− g(x, χ))] ≥ p (2)

where E [·] denotes the expectation, g(x, χ) =
∑n
i=1 χixi is the total weight

of the chosen items, HR+ denotes the indicator function of the positive real
interval - the Heaviside function, and p ∈ (0.5, 1] is the prescribed probability.
We refer to the function inside the expectation of the constraint function as
θ, i.e. θ(x, χ) = HR+(c− g(x, χ)).

3 Problem solving method

Due to its combinatorial nature, ECKP can be solved using a branch-and-
bound framework as presented in [4]. To obtain upper bounds, the authors
propose to solve the corresponding continuous optimization problem using a
stochastic gradient type algorithm. A stochastic gradient algorithm is an al-
gorithm that combines both Monte-Carlo techniques and the deterministic
gradient method. More precisely, instead of computing the gradient of the ob-
jective funtion (that is a function in expectation) to determine the direction
of descent, one uses the gradient of the function insight the expectation. By
drawing independent samples of the random variables at each iteration, one
approximates the expectation.
Applying a gradient method to solve the relaxed ECKP is promising as its
objective function is concave and, in addition, constraint (2) defines a convex
feasible set due to the assumption that the weights are independently normally
distributed.
The particular stochastic gradient algorithm used in this work is the Stochas-
tic Arrow-Hurwicz algorithm (hereafter called SAH-algorithm) that uses La-
grangian multipliers to deal with the expectation constraint (for further details
see [3]).

112

However, to use such an algorithm for ECKP , one has to estimate the gradi-
ent of the indicator function HR+(·). In this paper, we apply two different ap-
proaches: the first one is a non-biased estimator based on Integration by Parts
(called hereafter IP-method) proposed in [1] to solve continuous stochastic
optimization problems. The second approach is a Finite Differences estimator
(FD-method) presented in [2]. Unlike the IP-method method, the FD-method
provides a biased estimator of the gradient.
In subsection 3.0.1 we present the two methods. Subsection 3.0.2 gives a first
insight in the convergence analysis we conducted.

3.0.1 Gradient computation methods

In the FD-method, the h-th component of the gradient of θ is approximated
by the corresponding difference quotient

θ(x+ δνh, χ)− θ(x− δνh, χ)

2δ

where δ > 0 and νh ∈ {0, 1}n such that νhh = 1 and νhi = 0 for i 6= h.
The basic idea of the IP-method consists in using Integration by Parts to
reformulate E[θ(x, χ)] which gives rise to a function in expectation E[θ̃(x, χ)]
s.t. E[θ̃(x, χ)] = E[θ(x, χ)]. θ̃ is differentiable and the idea is to use the gradient
of θ̃ in the SAH-algorithm. Andrieu et al. presented how to compute such a
θ̃(x, χ) using Integration by Parts (see Theorem 5.5 in [1]). We state and proof
their theorem for the case of ECKP with normally distributed weights.

3.0.2 Convergence analysis

When using the IP-method, main adaptations have been made to correctly
check all hypotheses of convergence. Instead of replacing {0, 1}n by [0, 1]n

when relaxing ECKP , the theoretical analysis compels us to consider a com-
plementary set of a neighborhood of 0[0,1]n . However, assuming that an empty
knapsack is not an optimal solution, it is convenient to consider that the
optimal solution vector of the continuous problem contains at least one com-
ponent xκ with xκ ≥ 1/n. We are thus allowed to replace [0, 1]n by {x ∈
[0, 1]n | ||x||∞ ≥ 1/n} = Xcont. Accordingly, we obtain the following admissible
set of the relaxed ECKP :

Xad
cont = {x ∈ Xcont : E [HR+(c− g(x, χ))] ≥ p}

Checking that all steps of the algorithm stay in this subset is a central point
of our work.

113

4 Numerical results for the relaxed and combinatorial ECKP

We tested our algorithms on an instance from the literature as well as on a
great number of randomly generated instances.
Numerical tests of the SAH-algorithm involving the abovementioned adap-
tations have shown that the algorithm converges on all tested instances. We
also compared our approach with a method that has previously been used
to solve the relaxed ECKP . The idea of this method is to reformulate the
problem as a deterministic equivalent second order cone problem (SOCP) and
to solve it using an interior point algorithm. It turned out that in terms of
running time, our SAH-algorithm outperforms the SOCP approach for small
and medium size instances (up to 1000 items). Concerning the resolution of
the combinatorial problem using a branch-and-bound framework, we are able
to solve problems with up to 250 items in an average computing time of 1h.
In comparison, when using the SOCP procedure one can only solve problems
up to 75 items in comparable time.

References

[1] L. Andrieu. Optimization sous contrainte en probabilité. Ecole Nationale des
Ponts et Chaussés, 2004.

[2] Laetitia Andrieu, Guy Cohen, and Felisa Vzquez-Abad. Stochastic programming
with probability constraints. http://fr.arxiv.org/abs/0708.0281 (Accessed 24
October 2008), 2007.

[3] J. C. Culioli and G. Cohen. Optimisation stochastique sous contraintes en
espérance. Comptes rendus de l’Académie des sciences, Paris, Série I, 320(6):753
758, 2008.

[4] Stefanie Kosuch and Abdel Lisser. Upper bounds for the 0-1 stochastic knapsack
problem and a b&b algorithm. Annals of Operations Research (Online First),
2009. http://dx.doi.org/10.1007/s10479-009-0577-5.

114

Determining Optimal Stationary Strategies

for Discounted Stochastic Optimal Control

Problem on Networks

Dmitrii Lozovanu a,∗, Stefan Pikl b

aInstitute of Mathematics and Computer Science, Academy of Sciences,
Academy str., 5, Chisinau, MD–2028, Moldova

bInstitut für Theoretische Informatik, Mathematik und Operations Research,
Fakultät fur Informatik, Universität der Bundeswehr, München

Abstract

The stochastic version of discrete optimal control problem with infinite time horizon
and discounted integral-time cost criterion is considered. This problem is formulated
and studied on certain networks. A polynomial time algorithm for determining the
optimal stationary strategies for the considered problems is proposed and some
applications of the algorithm for related Markov decision problems are described.

Key words: Discounted Stochastic Control Problem, Optimal Stationary
Strategies, Polynomial Time Algorithm, Discounted Markov Processes

1 Introduction, Problem Formulation and the Main Concept

In this paper we consider the stochastic version of the following discrete opti-
mal control problem with infinite time horizon and a discounted integral-time
cost criterion by trajectory. Let a time-discrete system L with a finite set of
states X be given. Assume that the dynamics of the system is described by
a directed graph of states transitions G = (X,E) where the set of vertices
X corresponds to the set of states of the dynamical system; an arbitrary di-
rected edge e = (x, y) expresses the possibility of the system to pass from
the state x = x(t) to the state y = x(t) at every discrete moment of time

∗ Dmitrii Lozovanu
Email address: lozovanu@usm.md, stefan.pickl@unibw.de (Stefan Pikl).

CTW2010, University of Cologne, Germany. May 25-27, 2010

t = 0, 1, 2, Hereby, a directed edge e = (x, y) ∈ E corresponds to a fea-
sible stationary control of system L in the state x and the subset of edges
E+(x) = {e = (x, y) ∈ E|y ∈ X} corresponds to the set of feasible stationary
controls of the system in the state x ∈ X. We assume that on the edge set E a
cost function c : E → R is defined which assigns a cost ce to each directed edge
e = (x, y) ∈ E when the system makes a transition from the state x = x(t) to
the state y = x(t+ 1) for every t = 0, 1, 2, . . .,i.e. the costs cx(t),x(t+1) does not
depend on t. We define a stationary control of system L in G as a map

s : x→ y ∈ X+(x) for x ∈ X,

where X+(x) = {y ∈ X|(x, y) ∈ E}. Let s be an arbitrary stationary con-
trol. Then the set of edges of the form (x, s(x)) in G generates a subgraph
Gs = (X,Es) where each vertex x ∈ X contains one leaving directed edge.
So, if the starting state x0 = x(0) is fixed then the system makes transi-
tions from one state to another through the corresponding directed edges
es0, e

s
1, e

s
2, . . . , e

s
t , . . . , where e

s
t = (x(t), x(t+1)), t = 0, 1, 2, This sequence

of directed edges generates a trajectory x0 = x(0), x(1), x(2), . . . which leads
to a unique directed cycle. For an arbitrary stationary strategy s and a fixed
starting state x0 the discounted integral-time cost σλ

x0
(s) is defined as follows

σλ
x0
(s) =

∑∞
t=0 λ

tcest , where λ, 0 ≤ λ < 1, is a given (so called) discounted
factor. Based on the results from [1,3] it is easy to show that for an arbitrary
stationary strategy s there exists σλ

x0
(s). If we denote by σλ(s) the vector col-

umn with components σλ
x(s) for x ∈ X then σλ

x0
(s) can be found by solving

the system of linear equations (I−λP s)σλ(s) = cs, where cs is the vector with
corresponding components c(x,s(x)) for x ∈ X, I is the identity matrix and
P s the matrix with elements psx,y for x, y ∈ X defined as follows

psx,y =




1, if y = s(x);

0, if y 6= s(x).

We are seeking for a stationary control s∗ such that σλ
x0
(s∗) = mins σ

λ
x0
(s). In

this paper we consider the stochastic version of the problem formulated above.
We assume that the dynamical system may admit states in which the vector
of control parameters is changed in a random way. So, the set of states X is
divided into two subsets X = X1 ∪X2, X1 ∩X2 = ∅ , where X1 represents
the set of states in which the decision maker is able to control the dynamical
system and X2 represents the set of states in which the dynamical system
makes transition to the next state in a random way. So, for every x ∈ X on
the set of feasible transitions E+(x) the distribution function p : E+(x) → R
is defined such that

∑
e∈E+(x) pe = 1, pe ≥ 0, ∀e ∈ E+(x) and the transitions

from the states x ∈ X2 to the the next states are made according to these
distribution functions. Here in a similar way as in the previous case of the
problem we assume that to each directed edge e = (x, y) ∈ E a cost ce is
associated when the system makes a transition from the state x = x(t) to

116

the state y = x(t + 1) for every t = 0, 1, 2, In addition we assume that
the discounted factor λ, 0 ≤ λ < 1, and the starting state x0 are given. We
define a stationary control for the considered problem as a map

s : x→ y ∈ X+(x) for x ∈ X1.

For an arbitrary stationary strategy s we define the graph Gs = (X,Es∪EX2),
where Es = {e = (x, y) ∈ E|x ∈ X1, y = s(x)}, EX2 = {e = (x, y)|x ∈
X2, y ∈ X}. This graph corresponds to a Markov process with the probability
matrix P s = (psx,y), where

psx,y =





px,y, if x ∈ X2 and y = X;

1, if x ∈ X1 and y = s(x);

0, if x ∈ X1 and y 6= s(x).

For this Markov process with associated costs ce, e ∈ E we can define the
expected discounted integral-time cost σλ

x0
(s) in the same way as for dis-

counted Markov processes with rewards (if we treat the rewards as the costs).
In this paper we consider the problem of determining the strategy s∗ for which
σλ
x0
(s∗) = mins σ

λ
x0
(s).

2 The Main Results

The stationary case of the considered discounted stochastic control problem
can be studied and solved using the general concept of Markov decision pro-
cesses and the linear programming approach to corresponding problems (see
[1–3]). Here we develop a new technique and we will formulate a new linear
programming problem which is more suitable to the specific context. To obtain
our linear model we shall use the following condition:





σx − λ
∑

y∈X+(x) p
s
x,yσy =

∑
y∈X+(x) c(x,y)p

s
x,y, ∀x ∈ X1;

σx − λ
∑

y∈X+(x) px,yσy =
∑

y∈X+(x) c(x,y)px,y, ∀x ∈ X2,
(1)

for an arbitrary stationary strategy s. For fixed s the probabilities psx,y, x ∈
X, y ∈ X+(x), satisfy the conditions:

∑
y∈X+(x) p

s
x,y = 1, ∀x ∈ X1; px,y ∈

{0, 1}, ∀x ∈ X1, y ∈ X+(x). The system (1) has a unique solution with respect
to σx for x ∈ X and therefore we uniquely determine σs

x0
. Thus we can consider

the linear programming problem: Maximize

ψps(σ) = σx0 (2)

117

subject to (1). This problem has a unique feasible solution which is the optimal
one. The dual program for this problem is: Minimize

ϕps(α) =
∑

x∈X1

∑

y∈X(x)

c(x,y)p
s
x,yαx +

∑

x∈X2

∑

y∈X(x)

c(x,y)px,yαx (3)

subject to



αy − λ

∑
x∈X−

1 (y) p
s
x,yαx − λ

∑
x∈X−

2 (y) px,yαx ≥ 1, y = x0;

αy − λ
∑

x∈X−
1 (y) p

s
x,yαx − λ

∑
x∈X−

2 (y) px,yαx ≥ 0, ∀ y ∈ X \ {x0}.
(4)

If we take here the minimum with respect to s then we obtain a bilinear
programming problem with respect to αx and psx,y, where p

s
x,y satisfy the con-

ditions:
∑

y∈X+(x) p
s
x,y = 1; psx,y ∈ {0, 1}, ∀x ∈ X1, y ∈ X+(x). We have proved

that the optimal solution is preserved if these conditions are changed by con-
ditions:

∑
y∈X+(x) p

s
x,yαx = αx, ∀x ∈ X1, ∀y ∈ X+(x);αx ≥ 0, βx,y ≥ 0, ∀x ∈

X, y ∈ X+(y). If we substitute after that operation βx,y = psx,yαx then our bi-
linear programming problem obtained on the bases of (3),(4) with mentioned
above conditions is reduced to the linear programming problem: Minimize

ϕ(α, β) =
∑

x∈X1

∑

y∈X(x)

c(x,y)βx,y +
∑

x∈X2

∑

y∈X(x)

c(x,y)px,yαx (5)

subject to




αy − λ
∑

x∈X−
1 (y) βx,y − λ

∑
x∈X−

2 (y) px,yαx ≥ 1, y = xo;

αy − λ
∑

x∈X−
1 (y) βx,y − λ

∑
x∈X−

2 (y) px,yαx ≥ 0, ∀ y ∈ X \ {x0};
∑

y∈X−(x) βx,y = αx, ∀x ∈ X1; βx,y ≥ 0, αx ≥ 0, ∀x ∈ X, y ∈ X+(x),

(6)

where X−
1 (y) = {x ∈ X1|(x, y) ∈ E}, X−

2 (y) = {x ∈ X2|(x, y) ∈ E}. The
following result holds: If α∗

x, β
∗
x,y is a basic optimal solution of the problem

(5),(6) and α∗
x 6= 0 for x ∈ X1 then p

s∗
x,y = β∗

x,y/α
∗
x ∈ {0, 1}, x ∈ X1, y ∈ X+(y);

the optimal stationary strategy s∗ : x → y for y ∈ X+(x) corresponds to
ps

∗
x,y = 1 for x ∈ X1, y ∈ X+(x).

References

[1] Howard R.A., Dynamic Programming and Markov Processes. Wiley (1960)

[2] Lozovanu D., Pickl. S., Optimization and Multiobjective Control of Time-
Discrete Systems. Springer Verlag (2009)

[3] Puterman M., Markov Decision Processes. Wiley (1993)

118

Approximating Independent Set in

Semi-Random Graphs

Bodo Manthey a Kai Plociennik b

aUniversity of Twente, Department of Applied Mathematics
P. O. Box 217, 7500 AE Enschede, The Netherlands

bTU Chemnitz, Fakultät für Informatik
Straße der Nationen 62, 09107 Chemnitz, Germany

Abstract

We present an algorithm for the independent set problem on semi-random graphs,
which are generated as follows: An adversary chooses an n-vertex graph, and then
each edge is flipped independently with a probability of ε > 0. Our algorithm runs
in expected polynomial time and guarantees an approximation ratio of roughly
O(

√
nε), which beats the inapproximability bounds.

1 Introduction and Our Results

Given an undirected graph G = (V,E), the goal of the maximum indepen-
dent set problem (IS) is to find an independent set I ⊆ V (i.e., no edge of
E connects two vertices of I) of maximum cardinality. The size of the largest
such set is G’s independence number α(G). IS is NP-hard and even hard to
approximate with a ratio of O(n1−δ) for every δ > 0, where n is the number
of vertices [5]. The best worst-case polynomial-time approximation algorithm

for IS achieves an approximation ratio of O(n (log logn)2

(log n)3
) [2]. Often, however,

approximation algorithms show a better performance than their worst-case
guarantees promise. To explain the gap between worst-case and observed ap-
proximability, the average-case approximability of IS with respect to random
graphs in the G(n, p) model has been analyzed by Krivelevich and Vu [4]. They
achieve an approximation ratio of O(

√
np/ logn) in expected polynomial time.

A drawback of such an average-case analysis is that it often says little about

Email addresses: b.manthey@utwente.nl (Bodo Manthey),
kai.plociennik@informatik.tu-chemnitz.de (Kai Plociennik).

CTW2010, University of Cologne, Germany. May 25-27, 2010

GreedyIS(G)
1: Set C1 := {1} and χ := 1.
2: For v = 2, . . . , n: If there is an i such that Ci ∪ {v} is an independent set

of G, then Ci := Ci ∪ {v} for the smallest such i. Otherwise, create a new
class by setting χ := χ+ 1 and Cχ := {v}.

3: Choose i that maximizes |Ci|. Output I = Ci.

Algorithm 1: A simple greedy algorithm for independent set.

typical performance: random instances have very special properties with high
probability and often do not reflect real instances. To circumvent this, graph
problems have been analyzed with semi-random inputs [1,3].

In this paper, we analyze the approximability of IS for a semi-random input
model: An adversary specifies a graph G = (V,E). Then, a random graph
G = (V, E) is produced by flipping each potential edge in G independently
with a probability of ε > 0. More precisely, for every e ∈ E, we have e ∈ E
with a probability of pe = 1 − ε, while for every e /∈ E, we have e ∈ E with
a probability of pe = ε. We call this distribution G(G, ε). In the extreme case
ε = 0, the adversary has full power and we have G = G. For larger values of ε,
the adversary loses power. We adapt the algorithm of Krivelevich and Vu [4]
to our semi-random model and show that it guarantees an approximation ratio
of roughly O(

√
nε) in expected polynomial time.

2 Approximating Independent Set

For simplicity, we always assume V = {1, . . . , n} from now on. GreedyIS
(Algorithm 1) is a simple greedy algorithm, which outputs an independent
set. GreedyIS is later used as a subroutine of ApproxIS.

Lemma 1 Let G = (V,E) be a graph, and let ε be arbitrary with n−1/2 ≤
ε ≤ 1/2. Let gis(G, ε) = 1

32
·min{ lnn

ε
, n2 lnn
|E| ln(1/ε)}. Let I be the independent set

of G computed by GreedyIS, where G is drawn from G(G, ε). Then Pr[|I| <
gis(G, ε)] ≤ e−n lnn.

We also need an upper bound on the independence number of a graph drawn
from G(G, ε). The proof is an adaption of Krivelevich and Vu’s technique [4] to
our semi-random model. For a graph G and a random graph G = (V, E) drawn
from G(G, ε), let A = A(G, G, ε) = (aij)1≤i,j≤n be the n × n-matrix given by
aij = 1 if e = {i, j} 6∈ E and aij = −(1 − pe)/pe if e = {i, j} ∈ E , where
pe = ε if e /∈ E and pe = 1 − ε if e ∈ E. Note that A depends on G since G
defines the values pe. ¿From the results of Krivelevich and Vu [4, Lemma 2.4],
we easily get α(G) ≤ λ1(A(G, G, ε)) for any G, ε, and G, where λ1 denotes
the largest eigenvalue of a matrix. We have to show that λ1(A(G, G, ε)) =

120

ApproxIS(G = (V, E), G, ε)
1: I := GreedyIS(G). If |I| < gis(G, ε), go to Step 5.

2: Compute λ1(A(G, G, ε)). If λ1 < 28 · (logn) ·
√
n/ε, then output I.

3: Compute |N(S ′)| for all sets S ′ ⊆ V with |S ′| = (8 logn)/ε. If |N(S ′)| ≤
(2 logn) ·

√
n/ε for all such subsets S ′, output I.

4: Check all subsets S ′′ ⊆ V with |S ′′| = (8 logn) ·
√
n/ε. If none of them is

independent, output I.
5: Try all subsets of V and output a largest independent set found.

Algorithm 2: Approximation algorithm for independent set with guaranteed
approximation ratio and expected polynomial running-time.

O((logn) ·
√
n/ε) with high probability. Krivelevich and Vu’s proof [4] of the

corresponding result for G(n, p) graphs is based on a concentration result for
the largest eigenvalue of a matrix. To apply their techniques, we first have to
determine the expected value E[λ1(A)] of the largest eigenvalue (Lemma 2).
Using this, we can derive a tail bound for λ1(A) (Lemma 3). Together with
α(G) ≤ λ1(A), we then get a concentration result for the size of the largest
independent set in G(G, ε) graphs (Theorem 4).

Lemma 2 Fix a graph G = (V,E), and let ε = Ω((log n)2/n), ε ≤ 1/2. Let

A = A(G, G, ε) for G drawn from G(G, ε). Then E[λ1(A)] ≤ 27(logn)
√
n/ε.

Lemma 3 Under the same assumptions as in Lemma 2, we have Pr[λ1(A) ≥
28(log n)

√
n/ε] ≤ 4 exp(−29nε(logn)2).

Theorem 4 Fix a graph G = (V,E), and let ε = Ω((log n)2/n), ε ≤ 1/2. Let

G be a random graph drawn from G(G, ε). Then E[α(G)] ≤ 27 · (log n) ·
√
n/ε

and Pr[α(G) ≥ 28 · (log n) ·
√
n/ε] ≤ 4 exp(−29 · nε · (logn)2).

Our algorithm ApproxIS (Algorithm 2) gets the adversarial graph G, the
flip probability ε, and the random graph G from G(G, ε) as input. It runs
GreedyIS and tries to certify that this yields a good approximation. If this
fails, ApproxIS turns to brute-force search. Let us briefly discuss the influence
of G. With decreasing ε and increasing |E|, the graph G gains influence. This
is reflected in the approximation ratio below. In Step 3, the following definition
is used: For a graph G = (V,E) and S ⊆ V , the non-neighborhood N(S) of S
is the set of vertices not adjacent to S.

Theorem 5 Fix a graph G = (V,E) and a flip probability n−1/2 ≤ ε ≤ 1/2.
Let G be drawn from G(G, ε). Then ApproxIS(G, G, ε) has polynomial expected

running time. If ε is sufficiently large, i.e., ln(1/ε)
ε

≤ n2

|E| , it guarantees an

approximation ratio of O(
√
nε). Otherwise, it guarantees an approximation

ratio of O
(|E| log(1/ε)

n3/2
√
ε

)
.

121

GreedyIS alone is an algorithm with worst-case polynomial running-time, but
the approximation ratio then holds only in expectation and with high proba-
bility. This complements the performance of ApproxIS. The analysis follows
from Lemma 1 and Theorem 4.

Corollary 6 Let G = (V,E) be a graph, and let n−1/2 ≤ ε ≤ 1/2. Then

GreedyIS achieves an expected approximation ratio of O
(√

n/ε

min{1/ε,n2/(|E| ln(1/ε))}

)

on graphs drawn from G(G, ε). If ln(1/ε)
ε

≤ n2

|E|, i.e., ε is large enough, this sim-

plifies to O(
√
nε). The approximation ratio is not only achieved in expectation,

but also with a probability of at least 1− exp(−Ω(nε(log n)2)).

3 Discussion

We have analyzed the approximability of IS in a semi-random input model.
We have presented an approximation algorithm that guarantees an approxima-
tion ratio of roughly O(

√
nε) in expected polynomial time. A simple greedy

algorithm (Algorithm 1) alone achieves an expected approximation ratio of
O(

√
nε) in worst-case polynomial time. A subtlety of our Algorithm 2 is that

it needs the original graph as an additional input. We believe that avoiding
this requires new techniques if it can be avoided at all. The reason is that
our goal was a guaranteed approximation ratio. To achieve this, the algorithm
has to know when to switch to brute-force search in order to maintain also an
expected polynomial running-time. GreedyIS alone, which needs neither the
original graph nor ε, has complementary properties: worst-case polynomial
running-time but the approximation ratio is only achieved in expectation.

References

[1] Amin Coja-Oghlan. Finding large independent sets in polynomial expected time.
Combin. Probab. Comput., 15(5):731–751, 2006.

[2] Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM J.
Discrete Math., 18(2):219–225, 2004.

[3] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J.
Comput. System Sci., 63(4):639–671, 2001.

[4] Michael Krivelevich and Van H. Vu. Approximating the independence number
and the chromatic number in expected polynomial time. J. Comb. Optim.,
6(2):143–155, 2002.

[5] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3(6):103–128, 2007.

122

Lattices and maximum flow algorithms

in planar graphs

Jannik Matuschke and Britta Peis

Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany

Key words: Lattice polyhedra, Flows in planar graphs, Left/right relation

1 Introduction

The special case of flows in planar graphs has always played a significant role in
network flow theory. The predecessor of Ford and Fulkerson’s well-known path
augmenting algorithm – and actually the first combinatorial flow algorithm
at all – was a special version for s-t-planar networks, i.e., those networks
where s and t can be embedded adjacent to the infinite face [3]. The basic
idea of this uppermost path algorithm is to iteratively augment flow along the
“uppermost” non-saturated s-t-path in the planar embedding of the network.
In 2006, Borradaile and Klein [1] established an intuitive generalization of this
algorithm to arbitrary planar graphs, which relies on a partial order on the
set of s-t-paths in the graph, called the left/right relation.

We connect these results from planar network flow theory with another field
of combinatorial optimization, the optimization on lattice structures. In 1978,
Hoffman and Schwartz introduced the notion of lattice polyhedra [5], a gener-
alization of Edmond’s polymatroids that is based on lattices, and proved total
dual integrality of the corresponding inequaltity systems if certain additional
properties hold, which are defined below.

Definition 1 Let E be a finite set, L ⊆ 2E and � be a partial order on L.
Then (L,�) is a lattice if for any pair of elements S, T ∈ L, there is a unique
largest common lower bound S ∧ T called meet and a unique least common
upper bound S ∨ T called join. A lattice is submodular if (S ∧ T)∩ (S ∨ T) ⊆
S ∩ T and (S ∧ T) ∪ (S ∨ T) ⊆ S ∪ T for all S, T ∈ L. It is consecutive if
S ∩ U ⊆ T for all S, T, U ∈ L with S � T � U .

Based on the total dual integrality result by Hoffman and Schwartz, several
different versions of two-phase-greedy algorithms were developed by Frank [4]

CTW2010, University of Cologne, Germany. May 25-27, 2010

and Faigle and Peis [2] in order to solve linear programming problems on
lattice polyhedra like the packing problem

max

{
rTy : y ∈ RL+,

∑

S∈L:e∈S
y(S) ≤ c(e) ∀e ∈ E

}

and its dual if L is a submodular and consecutive lattice and the objective
function r is supermodular and monotone 1 . Clearly, the path formulation of
the maximum flow problem is a special case of the general packing problem.

Results: We show that the left/right relation induces a submodular lattice
on the set of simple s-t-paths in a planar graph. If the network is s-t-planar,
this lattice is also consecutive, thus meeting all requirements of Hoffman and
Schwartz’ framework. This implies that Ford and Fulkerson’s uppermost path
algorithm is a special case of the two-phase greedy algorithm on lattice poly-
hedra (with r ≡ 1). Even more, this algorithm can also solve a weighted flow
problem, if the weights on the paths are supermodular and monotone. An
additional result will show that whenever the graph is just planar but not
s-t-planar, there is no partial order on the paths that induces a consecutive
and submodular lattice.

2 The left/right relation and the path lattice

We are given a directed graph G = (V,E) with a fixed planar embedding, a
fixed infinite face f∞ and two designated vertices s, t ∈ V . In our setting, paths
are allowed to use edges in either direction 2 , i.e., every path P is represented

by a subset of
←→
E := {−→e ,←−e : e ∈ E} such that −→e ∈ P if P uses the edge e in

its forward direction and←−e ∈ P if P uses e in backward direction. We denote
the set of all simple s-t-paths in G by P ⊆ 2

←→
E . We will analyze a partial

order on P called left/right relation and show that it induces a submodular
lattice (cf. Theorem 2), which is furthermore consecutive if the embedding
is s-t-planar (cf. Theorem 3). Finally, we will show that there is no partial
order on P that induces a consecutive and submodular lattice, if there is no
s-t-planar embedding of the graph (cf. Theorem 4).

2.1 The left/right relation

The left/right relation as presented in this subsection is a partial order on P
due to Klein [6]. We consider the cycle space of G, i.e., the subspace of all those
vectors in RE that fulfill flow conservation at all vertices. The elements of the
cycle space are called circulations. The vectors corresponding to the clockwise

1 These requirements on the weight function r are explained in [2].
2 The resulting lattice can later be restricted to directed paths, maintaining all its
properties.

124

boundary of the non-infinite faces in the embedded graph form a basis of the
cycle space. Thus, for every circulation, there is a unique face potential, i.e., an
assignment of numbers to the faces corresponding to the circulation. We say
a circulation is clockwise if the corresponding face potential is non-negative.

A path P ∈ P induces a vector δP ∈ RE by δP (e) = 1 if −→e ∈ P , δP (e) = −1 if
←−e ∈ P and δP (e) = 0 otherwise. It is easy to see that for two paths P,Q ∈ P,
the vector δP −δQ is a circulation. We say that P is left of Q and write P � Q
if this circulation is clockwise. It can be easily verified that the left/right
relation arising from this definition is a partial order on P. More details on
the definition can be found in [1] and [7].

2.2 The path lattice in planar graphs in general

We give a short description of how to obtain a largest common lower bound of
two paths P,Q ∈ P with respect to the left/right relation. Let φ be the face po-
tential corresponding to the circulation δP−δQ. For S+ := {f ∈ V ∗ : φ(f) > 0},
we define δP∧Q := δP −

∑
f∈S+ φ(f)δf . The vector δP∧Q induces a set of darts

DP∧Q := {−→e : δP∧Q(e) = 1} ∪ {←−e : δP∧Q(e) = −1}.

Intuitively speaking, the set DP∧Q is obtained by subtracting the “clockwise
part” of the circulation P−Q from P . Unfortunately, this set is not necessarily
a simple path. However, by flow decomposition, it can be decomposed into a
path and several cycles, which can be shown to be clockwise. From this, it can
be derived that the path actually is the meet of P and Q. Analogously, one
can construct a set DP∨Q containing the join of P and Q. A detailed proof of
this result can be found in [7].

Theorem 2 (P,�) is a submodular lattice with P ∧Q being the unique sim-
ple s-t-path contained in DP∧Q and P ∨ Q being the unique simple s-t-path
contained in DP∨Q.

Note that the path lattice is not consecutive in general.

2.3 The path lattice in s-t-planar graphs

In case the embedding of G is s-t-planar, meet and join of the path lattice can
be characterized in a more convenient way than in the general case, and even
more, the lattice turns out to be consecutive. As already mentioned, Ford and
Fulkerson used the existence of a unique uppermost path from s to t in every
s-t-planar graph for their uppermost path algorithm. Formally, this uppermost
path (and likewise a lowermost path) can be defined as the unique path with
the infinite face to the left (right) of all of its elements.

For some paths P,Q ∈ P let the subgraph of G containing only the edges
of P and Q be denoted by G[E(P ∪ Q)]. It can be shown that P is left of

125

Q if and only if P is the uppermost path in G[E(P ∪ Q)] (or, equivalently,
Q is the lowermost path in G[E(P ∪ Q)]). Given this characterization of the
left/right relation in s-t-planar graphs, it is easy to verify that if P and Q are
incomparable, join and meet are also the uppermost and lowermost paths of
G[E(P ∪ Q)]. In order to show consecutivity, one verifies that P � Q � R
implies that P and R are uppermost and lowermost path of G[E(P ∪Q∪R)]
as well, and thus any dart in d ∈ P ∩R is a loop in the dual and, by cycle/cut
duality, a one-element s-t-cut in the primal graph. This implies d ∈ Q.

Theorem 3 If the embedding of G is s-t-planar, (P,�) is a consecutive and
submodular lattice with P ∧ Q being the lowermost path in G[E(P ∪ Q)] and
P ∨Q being the uppermost path in G[E(P ∪Q)].

As a direct corollary, Ford and Fulkerson’s uppermost path algorithm [3] turns
out to be a special case of Phase 1 of the two-phase greedy algorithm for
submodular lattice polyhedra [2].

2.4 The negative result and a characterization of s-t-planar graphs

As pointed out above, the path lattice is not consecutive on planar graphs
in general. It can actually be shown that no graph that is planar but not
s-t-planar can be equipped with a partial order of the paths that achieves
consecutivity and submodularity at the same time. Together with the above
positive result for s-t-planar graphs, we achieve the following characterization
of s-t-planar graphs.

Theorem 4 A graph is s-t-planar if and only if it is planar and there is a par-
tial order on the set of its s-t-paths that induces a consecutive and submodular
lattice.

Sketch of proof. Consider the two graphs K−5 and K−3,3 that are obtained from
the Kuratowski graphs K5 and K3,3 by deleting the edge connecting s and t. It
can be shown by very elementary arguments that for both K−5 and K−3,3 there
is no partial order of the s-t-paths that induces a submodular and consecutive
lattice. The result then follows by applying Kuratowski’s Theorem.

3 Conclusion

We provided an extensive analysis of the left/right relation on the set of s-
t-paths in a planar graph. The relation induces a submodular lattice, which
is even consecutive if the graph is s-t-planar. The latter result implies that
the uppermost path algorithm by Ford and Fulkerson is a special case of the
two-phase greedy algorithm for packing problems on submodular lattice poly-
hedra. We furthermore showed that submodularity and consecutivity cannot
be achieved simultaneously by any partial order if the graph is not s-t-planar,
thus providing a characterization of this special class of planar graphs.

126

References

[1] G. Borradaile, P. Klein, An O(n log n) algorithm for maximum st-flow in a
directed planar graph, in: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, ACM, New York, 2006, pp. 524–533.

[2] U. Faigle, B. Peis, Two-phase greedy algorithms for some classes of
combinatorial linear programs, in: Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 161–166.

[3] L. R. Ford, Jr., D. R. Fulkerson, Maximal flow through a network, Canadian
Journal of Mathematics. Journal Canadien de Mathématiques 8 (1956)

[4] A. Frank, Increasing the rooted-connectivity of a digraph by one, Mathematical
Programming 84 (3, Ser. B) (1999) 565–576. 399–404.

[5] A. J. Hoffman, D. E. Schwartz, On lattice polyhedra, in: A. Hajnal, V. T. Sós
(Eds.), Proceedings of the Fifth Hungerian Colloquium on Combinatorics, Vol.
I, Vol. 18 of Colloquia mathematica Societatis János Bolyai, North-Holland,
Amsterdam, 1978, pp. 593–598.

[6] P. N. Klein, Multiple-source shortest paths in planar graphs, in: Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, 2005, pp. 146–155.

[7] J. Matuschke, Lattices and maximum flow algorithms in planar graphs, Diploma
thesis, TU Berlin (2009).

127

hh

128

Maximum ∆-edge-colorable subgraphs of class

II graphs

Vahan V. Mkrtchyan, a,1 Eckhard Steffen a

aPaderborn Institute for Advanced Studies in Computer Science and Engineering,
Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

Key words: maximum ∆-edge-colorable subgraph, matching, 2-factor,
edge-chromatic number, chromatic index, class II graph

1 Introduction

We consider finite, undirected graphs G = (V,E) with vertex set V and edge
set E. The graphs might have multiple edges but no loops. Let δ(G) and ∆(G)
denote the minimum and maximum degree of a graphG, respectively. A partial
proper t-edge-coloring of a graph G is an assignment of colors {1, ..., t} to some
edges of G such that adjacent edges receive different colors. If θ is a partial
proper t-edge-coloring of a graph G and P is a path, then P is called to be
α−β alternating, if the edges of P are colored by the colors α or β. A partial
proper t-edge-coloring of a graph G is called a proper t-edge-coloring (or just
t-edge-coloring) of G if all edges are assigned some color. The least number
t for which G has a t-edge-coloring is called the chromatic index of G and is
denoted by χ′(G). The classical theorems of Shannon and Vizing state:

Theorem 1 (Shannon) For any graph G: ∆(G) ≤ χ′(G) ≤ ⌊3∆(G)
2

⌋.

Theorem 2 (Vizing) For any graph G: ∆(G) ≤ χ′(G) ≤ ∆(G)+µ(G), where
µ(G) is the maximum multiplicity of an edge in G.

A graph G with χ′(G) = ∆(G) = ∆ is class I, otherwise it is class II. There are
long standing open conjectures on the class II graphs, cf. [9]. It is a notorious
difficult open problem to characterize class II graphs or even to obtain some
insight into their structural properties. This paper focuses on the ∆-colorable

Email addresses: vahanmkrtchyan2002@{ysu.am, ipia.sci.am,yahoo.com}
(Vahan V. Mkrtchyan,), es@upb.de (Eckhard Steffen).
1 The author is supported by a fellowship from the Heinrich Hertz-Stiftung

CTW2010, University of Cologne, Germany. May 25-27, 2010

part of graphs. A subgraph H of G is called maximum ∆-edge-colorable, if
it is ∆-edge-colorable and contains as many edges as possible. The fraction
|E(H)|/|E(G)| is subject of many papers, and e.g. lower bounds are proved
for cubic, subcubic or 4-regular graphs, [1,3,5]. The aim of this paper is to
prove a general best possible lower bound for all graphs.

Let H be a maximum ∆-edge-colorable subgraph of G, which is properly
colored with {1, ...,∆}. Usually, we will refer to edges of E(G)\E(H) as un-
colored edges. For a vertex v of G let C(v) be the set of colors that appear at
v, and C̄(v) = {1, ...,∆}\C(v) be the set of colors which are missing at v. Let
e = (v, u) ∈ E(G)\E(H) be an uncolored edge, and α ∈ C̄(u), β ∈ C̄(v). Since
H is a maximum ∆-edge-colorable subgraph of G, we have that α ∈ C(v) and
β ∈ C(u). Consider the α − β alternating path P starting from the vertex
v. Again, since H is a maximum ∆-edge-colorable subgraph of G, the path
P ends in u. Thus P is an even path, which together with the edge e forms
an odd cycle. We will denote this cycle by Ce

α,β,H . If the subgraph H is fixed,
then we will shorten the notation to Ce

α,β.

The cycles corresponding to uncolored edges, that are the cycles Ce
α,β, play a

central role in [6,8] in the study of cubic graphs. One aim of the present paper
is to generalize some of these results to arbitrary graphs, and to investigate
the maximum ∆-edge-colorable subgraphs. We show that any set of vertex
disjoint cycles of a graph G with ∆(G) ≥ 3 can be extended to a maximum
∆-edge-colorable subgraph of G. In particular, any 2-factor of a graph with
maximum degree at least three can be extended to such a subgraph.

For a graph G let re(G) denote the minimum number of edges that should
be removed from G in order to obtain a graph H with χ′(H) = ∆(G). Let G
be a graph and φ a χ′(G)-coloring of G with χ′(G) = ∆(G) + k (k ≥ 1). Let
r′φ(G) = min

∑k
j=1 |φ−1(ij)|, and define r′e(G) = minφ r

′
φ(G) as the minimum

size of the union of k color-classes in a χ′(G)-edge-coloring of G.

Clearly, re(G) = |E(G)| − |E(H)|, where H is a maximum ∆-edge-colorable
subgraph of G. In [4] it is shown that the complement of any maximum 3-
edge-colorable subgraph of a cubic graph is a matching, and hence re(G) =
r′e(G) for cubic graphs. This paper generalizes this result to simple graphs.
We further prove some bounds for the vertex degrees of a maximum ∆(G)-
colorable subgraph H .

2 The main results

The key property of cycles corresponding to uncolored edges that is used in
[6,8] is their vertex-disjointness. There are many examples showing that they

130

can have even common edges in the general case. Despite this, it turns out
that, as Theorem 3 demonstrates below, the edge-disjointness of the cycles
can be preserved.

Theorem 3 Let H be any maximum ∆(G)-edge-colorable subgraph of a graph
G, and let E(G) − E(H) = {ei = (ui, vi)|1 ≤ i ≤ n} be the set of uncolored
edges. Assume that H is properly edge-colored with colors 1, . . . ,∆(G). Then
there is an assignment of colors α1 ∈ C(u1), β1 ∈ C(v1), . . . , αn ∈ C(un), βn ∈
C(vn) to the uncolored edges such that E(Cei

αi,βi
) ∩ E(C

ej
αj ,βj

) = ∅, for all 1 ≤
i < j ≤ n.

The next Theorem generalizes the result of [4] that any 2-factor of a cubic
graph can be extended to a maximum 3-edge-colorable subgraph to arbitrary
graphs.

Theorem 4 Let F̄ be any set of vertex-disjoint cycles of a graph G with ∆ =
∆(G) ≥ 3. Then there is a maximum ∆-edge-colorable subgraph H of G, such
that E(F̄) ⊆ E(H).

Corollary 1 Let F̄ be any 2−factor of a graph G with ∆(G) ≥ 3. Then there
is a maximum ∆(G)-edge-colorable subgraph H of G, such that E(F̄) ⊆ E(H).

Let G be a graph. The length of the shortest (odd) cycle of the underlying
simple graph of G is called (odd) girth of G. If X ⊆ V (G), then ∂G(X) denotes
the set of edges with precisely one end in X.

Theorem 5 Let H be any maximum ∆(G)-edge-colorable subgraph of a graph
G. Then

(1) |∂H(X)| ≥ ⌈ |∂G(X)|
2

⌉ for each X ⊆ V (G).

(2) dH(x) ≥ ⌈dG(x)
2

⌉ for each vertex x of G.

(3) δ(H) ≥ ⌈ δ(G)
2
⌉.

The bounds are best possible.

Theorem 6 Let G be a graph with girth g ∈ {2k, 2k + 1} (k ≥ 1), and H a
maximum ∆(G)-edge-colorable subgraph of G, then |E(H)| ≥ 2k

2k+1
|E(G)|, and

the bound is best possible.

Theorem 7 Every simple graph G contains a maximum∆-edge-colorable sub-
graph such that the uncolored edges form a matching.

Theorem 7 is equivalent to:

Theorem 8 For any simple graph G: re(G) = r′e(G).

131

It can be shown that a maximum ∆-edge-colorable subgraph of a multigraph
can be class II as well. This cannot be the case for simple graphs as the
following theorem shows.

Theorem 9 Let H be a maximum ∆(G)-edge-colorable subgraph of a simple
graph G, then ∆(H) = ∆(G), i.e. H is class I.

Theorem 7 says, that every simple class II graphG has a maximum ∆-colorable
subgraph H , such that χ′(G\E(H)) = 1. We believe that this can be general-
ized to multigraphs:

Conjecture 1 Let G be a graph with χ′(G) = ∆(G) + k (k ≥ 0). Then there
is a maximum ∆(G)-colorable subgraph H of G such that χ′(G\E(H)) = k.

This conjecture is equivalent to the following statement.

Conjecture 2 For any graph G: re(G) = r′e(G).

References

[1] M. O. Albertson, R. Haas, Parsimonious edge coloring, Disc. Math. 148 (1996)
1-7

[2] H. A. Kierstead, On the chromatic index of multigraphs without large triangles,
J. Comb. Theory, Ser. B 36 (1984) 156-160

[3] V. V. Mkrtchyan, S. Petrosyan, G. Vardanyan, On disjoint matchings in cubic
graphs, Disc. Math. to appear, (available at: http://arxiv.org/abs/0803.0134)

[4] V. V. Mkrtchyan, S. Petrosyan, G. Vardanyan, On disjoint matchings in
cubic graphs: maximum 3-edge-colorable subgraphs, under review, (available at:
http://arxiv.org/abs/0909.2767)

[5] R. Rizzi, Approximating the maximum 3-edge-colorable subgraph problem, Disc.
Math. 309 (2009) 4166-4170.

[6] E. Steffen, Classifications and characterizations of snarks, Disc. Math. 188 (1998)
183-203.

[7] E. Steffen, A refinement of Vizing’s theorem. Disc. Math. 218 (2000) 289-291.

[8] E. Steffen, Measurements of edge-uncolorability, Disc. Math. 280 (2004) 191-214.

[9] T. R. Jensen, B. Toft, Graph coloring problems, Wiley-Interscience Series in
Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York,
1995.

132

Interval total colorings of bipartite graphs

P.A. Petrosyan a,b, A.S. Shashikyan a A.Yu. Torosyan a

aDepartment of Informatics and Applied Mathematics,YSU
bInstitute for Informatics and Automation Problems of NAS of RA

Key words: total coloring, interval coloring, bipartite graph, tree, complete
bipartite graph

1 Introduction

A total coloring of a graph G is a coloring of its vertices and edges such that
no adjacent vertices, edges, and no incident vertices and edges obtain the
same color. The concept of total coloring was introduced by V. Vizing [15]
and independently by M. Behzad [3]. The total chromatic number χ′′ (G) is
the smallest number of colors needed for total coloring of G. In 1965 V. Viz-
ing and M. Behzad conjectured that χ′′ (G) ≤ ∆(G) + 2 for every graph G
[3,15], where ∆(G) is the maximum degree of a vertex in G. This conjecture
became known as Total Coloring Conjecture [5]. It is known that Total Color-
ing Conjecture holds for cycles, for complete graphs, for bipartite graphs, for
complete multipartite graphs [17], for graphs with a small maximum degree
[6,11,14], for graphs with minimum degree at least 3

4
|V (G)| [5] and for planar

graphs G with ∆(G) 6= 6 [5,7,13,16]. M. Rosenfeld [11] and N. Vijayaditya
[14] independently proved that the total chromatic number of graphs G with
∆(G) = 3 is at most 5. A. Kostochka in [6] proved that the total chromatic
number of graphs with ∆(G) ≤ 5 is at most 7. The general upper bound for
the total chromatic number was obtained by M. Molloy and B. Reed [8], who
proved that χ′′ (G) ≤ ∆(G) + 1026 for every graph G. The exact value of the
total chromatic number is known only for paths, cycles, complete and com-
plete bipartite graphs, n-dimensional cubes, complete multipartite graphs of
odd order [5], outerplanar graphs [18] and planar graphs G with ∆(G) ≥ 9
[4,5,7,16].

Email addresses: pet petros@ipia.sci.am (P.A. Petrosyan),
anishashikyan@gmail.com (A.S. Shashikyan), arman.yu.torosyan@gmail.com
(A.Yu. Torosyan).

CTW2010, University of Cologne, Germany. May 25-27, 2010

The key concept discussed in this work is the following. Given a graph G, we
say that G is interval total colorable if there is t ≥ 1 for which G has a total
coloring with colors 1, 2, . . . , t such that at least one vertex or edge of G is
colored by i, i = 1, 2, . . . , t, and the edges incident with each vertex v together
with v are colored by dG(v) + 1 consecutive colors, where dG(v) is the degree
of the vertex v in G.

The concept of interval total coloring [9,10] is a new one in graph coloring,
synthesizing interval colorings [1,2] and total colorings. The introduced con-
cept is valuable as it connects to the problems of constructing a timetable
without a “gap”and it extends to total colorings of graphs one of the most
important notions of classical mathematics - the one of continuity.

In this work interval total colorings of bipartite graphs are investigated.

2 Main results

All graphs considered in this work are finite, undirected, and have no loops or
multiple edges. Let V (G) and E(G) denote the sets of vertices and edges of
G, respectively. An (a, b)-biregular bipartite graph G is a bipartite graph G
with the vertices in one part have degree a and the vertices in the other part
have degree b. An interval total t-coloring of a graph G is a total coloring of G
with colors 1, 2, . . . , t such that at least one vertex or edge of G is colored by
i, i = 1, 2, . . . , t, and the edges incident to each vertex v together with v are
colored by dG(v) + 1 consecutive colors. The set of all interval total colorable
graphs is denoted by T. For a graph G ∈ T, the least (the minimum span)
and the greatest (the maximum span) values of t for which G has an interval
total t-coloring is denoted by wτ (G) and Wτ (G), respectively. Clearly,

χ′′ (G) ≤ wτ (G) ≤ Wτ (G) ≤ |V (G)|+ |E(G)| for every graph G ∈ T.

First, we give a general upper bound for the maximum span in interval total
colorings of bipartite graphs.

Theorem 1. If G is a connected bipartite graph and G ∈ T, then

Wτ (G) ≤ 2|V (G)| − 1.

Note that the bound of Theorem 1 is sharp for the simple path Pn, since
Wτ (Pn) = 2n− 1 for any n ∈ N.

Next, we show that many bipartite graphs such as subcubic bipartite graphs,
regular bipartite graphs, trees, complete bipartite graphs, n-dimensional cubes,
(2, b)-biregular bipartite graphs, doubly convex bipartite graphs, grids and

134

some classes of bipartite graphs with maximum degree 4 have interval total
colorings. Moreover, we also obtain some bounds for the minimum span and
the maximum span in interval total colorings of these graphs. In particular,
we prove the following theorems.

Theorem 2. If G is a bipartite graph with ∆(G) ≤ 3, then G ∈ T and
wτ (G) ≤ 5.

Theorem 3. If G is an r-regular bipartite graph with r ≥ 2, then G ∈ T and
r + 1 ≤ wτ (G) ≤ r + 2.

Note that for any r ≥ 3, there is an r-regular bipartite graph such that G ∈ T
and wτ (G) = r + 2. In [12], it was proved that the problem of determining
whether χ′′ (G) = 4 is NP -complete even for a cubic bipartite graph G. There-
fore we can conclude that verification whether wτ (G) = r+1 for an r-regular
bipartite graph G with r ≥ 3 is also NP -complete.

Theorem 4. If T is a tree, then T ∈ T and wτ (T) ≤ ∆(T) + 2.

Theorem 5. If m+ n + 2− gcd (m,n) ≤ t ≤ m+ n + 1, where gcd (m,n) is
the greatest common divisor of m and n, then the complete bipartite graph
Km,n has an interval total t-coloring for any m,n ∈ N.

Theorem 6. For any m,n ∈ N

Wτ (Km,n) =





m+ n + 1, if m = n = 1,

m+ n + 2, otherwise.

Theorem 7. For the n-dimensional cube Qn, we have Qn ∈ T with

wτ (Qn) = χ′′ (Qn) and Wτ (Qn) ≥ (n+1)(n+2)
2

for any n ∈ N.

Moreover, for the n-dimensional cube Qn, we show that if wτ (Qn) ≤ t ≤
(n+1)(n+2)

2
, then Qn admits an interval total t-coloring.

Theorem 8. If G is a (2, b)-biregular bipartite graph with b ≥ 3, then G ∈ T
and b+ 1 ≤ wτ (G) ≤ b+ 2.

Finally, we show that there are bipartite graphs which have no interval total
coloring. The smallest known bipartite graph with 26 vertices and maximum
degree 18 that is not interval total colorable was obtained by A. Shashikyan.

135

References

[1] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl.
Math. 5 (1987) 25-34 (in Russian).

[2] A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of
graphs, J. Combin. Theory Ser. B 62 (1994) 34-43.

[3] M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State
University, 1965.

[4] O.V. Borodin, A.V. Kostochka, D.R. Woodall, Total colorings of planar graphs
with large maximum degree, J. Graph Theory 26 (1997) 53-59.

[5] T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in
Discrete Mathematics and Optimization, 1995.

[6] A.V. Kostochka, The total coloring of a multigraphs with maximal degree 5 is
at most seven, Discrete Mathematics 162 (1996) 199-214.

[7] L. Kowalik, J.-S. Sereni, R. Skrekovski, Total-colouring of plane graphs with
maximum degree nine, SIAM J. Discrete Math. 22 (2008) 1462-1479.

[8] M. Molloy, B. Reed, A bound on the total chromatic number, Combinatorica
18 (1998) 241-280.

[9] P.A. Petrosyan, Interval total colorings of complete bipartite graphs,
Proceedings of the CSIT Conference (2007) 84-85.

[10] P.A. Petrosyan, Interval total colorings of certain graphs, Mathematical
Problems of Computer Science 31 (2008) 122-129.

[11] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971)
396-402.

[12] A. Sanchez-Arroyo, Determining the total colouring number is NP -hard,
Discrete Mathematics 78 (1989) 315-319.

[13] D.P. Sanders, Y. Zhao, On total 9-coloring planar graphs of maximum degree
seven, J. Graph Theory 31 (1999) 67-73.

[14] N. Vijayaditya, On the total chromatic number of a graph, J. London Math.
Soc. (2) 3 (1971) 405-408.

[15] V.G. Vizing, Chromatic index of multigraphs, Doctoral Thesis, Novosibirsk,
1965 (in Russian).

[16] W. Wang, Total chromatic number of planar graphs with maximum degree ten,
J. Graph Theory 54 (2006) 91-102.

[17] H.P. Yap, Total colorings of graphs, Lecture Notes in Mathematics 1623,
Springer-Verlag, Berlin, 1996.

[18] Z. Zhang, J. Zhand, J. Wang, The total chromatic numbers of some graphs,
Scientia Sinica A 31 (1988) 1434-1441.

136

Pixel Guards in Polyominoes

Val Pinciu

Department of Mathematics, Southern Connecticut State University, New Haven,
CT 06515

Key words: art gallery problem, pixel, polyomino

1 Introduction

The original art gallery problem, posed by Klee in 1973, asks to find the min-
imum number of guards sufficient to cover any polygon with n vertices. The
first solution to this problem was given by Chvátal [1], who proved that ⌊n/3⌋
guards are sometimes necessary, and always sufficient to cover a polygon with
n vertices. Later Fisk [2] provided a shorter proof of Chvátal’s theorem us-
ing an elegant graph coloring argument. Klee’s art gallery problem has since
grown into a significant area of study. Numerous art gallery problems have
been proposed and studied with different restrictions placed on the shape of
the galleries or the powers of the guards. (See the monograph by O’Rourke
[4], and the surveys by Shermer [5] and Urrutia [6].)

In this paper we consider a variation of the art gallery problem where the
gallery is an m-polyomino, consisting of a connected union of m 1 × 1 unit
squares called pixels. Throughout this paper Pm denotes an m-polyomino. We
say that a point a ∈ Pm covers a point b ∈ Pm provided a = b, or the line
segment ab does not intersect the exterior of Pm. We say that a pixel A covers
a point b, provided some point a ∈ A covers b. A set of points G is called a
point guard set for Pm if for every point b ∈ Pm there is point a ∈ G such that
a covers b. A set of pixels G is called a pixel guard set for Pm if for every point
b ∈ Pm there is a pixel A ∈ G such that A covers b.

In [3], Irfan et al. show that ⌈m−1
3

⌉ point guards are sufficient and sometimes
necessary to cover any m-polyomino Pm, with m ≥ 2. They also note that
⌈m−1

3
⌉ is an upper bound for the minimum number of pixel guards sufficient to

cover any m-polyomino. In this paper we improve this bound, showing that an
m-polyomino always has a pixel guard set of cardinality ⌊m+1

11
⌋+⌊m+5

11
⌋+⌊m+9

11
⌋.

We also show that this bound is sharp, by constructing m-polyominoes that
require exactly ⌊m+1

11
⌋+ ⌊m+5

11
⌋+ ⌊m+9

11
⌋ pixel guards.

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Main Results

Here is our main result:

Theorem 1 For any m-polyomino Pm with m ≥ 2, ⌊m+1
11

⌋ + ⌊m+5
11

⌋+ ⌊m+9
11

⌋
pixel guards are always sufficient, and sometimes necessary to cover Pm.

Proof. We will use a construction to prove the necessity part of our result.
The polyomino P11k+2 from Figure 1 has 3+7k+4(k−1)+3 = 11k+2 pixels.
The dual graph of this polyomino is a tree with 1 + 2k+ (k − 1) + 1 = 3k+ 1
leaves. Since two pixels that correspond to a leaf cannot be guarded by the
same pixel guard, then the number of pixels required to guard P11k+2 is at
least 3k + 1. Simple alterations of this construction can provide examples of
m-polyominos that require at least ⌊m+1

11
⌋ + ⌊m+5

11
⌋ + ⌊m+9

11
⌋ pixel guards, for

any integer m ≥ 2. Next we will prove several technical lemmas, and the
sufficiency will follow from Proposition 2. �

Fig. 1. An (11k + 2)-polyomino that requires 3k + 1 pixel guards.

Lemma 1 For each positive integer m we define

f(m) =
⌊
m+ 1

11

⌋
+

⌊
m+ 5

11

⌋
+

⌊
m+ 9

11

⌋

Then the following are true:

(1) f(m+ 3) ≤ f(m) + 1 ≤ f(m+ 4) for all positive integers m.
(2) f(m+ 7) ≤ f(m) + 2 ≤ f(m+ 8) for all positive integers m.
(3) f(m+ 11) = f(m) + 3 for all positive integers m.
(4) f(m+ n− 2) ≥ f(m) + f(n)− 1 for all positive integers m and n.

Lemma 2 For any m-polyomino Pm with m ≥ 13, there exists a k, 4 ≤ k ≤
10 such that Pm is the union of a k-polyomino Pk and an (m− k)-polyomino
Pm−k. Moreover, if the smallest k that satisfies this property is k = 10, then
we can assume that exactly one pixel of Pm−10 is adjacent to P10.

Proof. Given an m-polyomino Pm, let G
∗
m be the dual graph of Pm, and let

Tm be a spanning tree of G∗
m. Since every vertex of G∗

m has maximum degree

138

4, we can look at Tm as a rooted trinary tree. For simplicity, we will label the
vertices of the rooted tree as the corresponding pixels in the dual polyomino.
We will also transfer the common terminology from rooted trees (child, parent,
sibling, etc) to the corresponding pixels. For any vertex A of Tm that is not
the root, we can obtain a spanning forest of G∗

m with two components, by
deleting the edge that connects A with its parent. These two componenets
will generate a decomposition of Pm into two polyominoes: a k-polyomino Pk

that contains A, called the polyomino generated by A and Tm, and another
polyomino Pm−k that does not contain A. If B is a pixel of Pm−k and C is a
pixel of Pk such that B and C are adjacent, we can create another spanning
tree T ′

m of G∗
m by replacing the edge that connects C with its parent in Tm

with the edge BC. We will call this an adoption and say that B adopted C.
An adoption will transfer a pixel of the polyomino generated by A, and all its
descendants to the complementary polyomino. Now if h is the height of Tm,
we consider the pixels of level h− 1, h− 2, h− 3, or h− 4 that have at least
three descendants. Obviously this set is not empty. Let A be such a pixel with
a minimum number of descendants. Then one can show that the polyomino
generated by A satisfies the conditions of the proposition, or we can do an
adoption to decrease the number of descendants of A. �

Lemma 3 (1) One pixel guard is always sufficient to cover any 5-polyomino.
(2) Two pixel guards are always sufficient to cover any 9-polyomino.
(3) Three pixel guards are always sufficient to cover any 12-polyomino.

Proposition 2 For any m-polyomino Pm, if m ≥ 2, then ⌊m+1
11

⌋ + ⌊m+5
11

⌋ +
⌊m+9

11
⌋ pixel guards are sufficient to cover Pm.

Proof. The proof of this proposition is by induction on m. If 2 ≤ m ≤ 12,
the statement follows from Lemma 3. If m ≥ 13, then by Lemma 2, Pm is the
union of a k-polyomino Pk and an (m−k)-polyomino Pm−k, where 4 ≤ k ≤ 10.
Assume k is the smallest with this property. Let f(m) be the function from
Lemma 1. Then by induction hypothesis the minimum number of pixel guards
required to watch Pm−k is g(Pm−k) ≤ f(m− k).
If k = 4 or k = 5, we obtain:
g(Pm) ≤ g(Pk) + g(Pm−k) ≤ 1 + g(Pm−k) ≤ 1 + f(m− 4) ≤ f(m).
If k = 8 or k = 9, we obtain:
g(Pm) ≤ g(Pk) + g(Pm−k) ≤ 2 + g(Pm−k) ≤ 2 + f(m− 8) ≤ f(m).

If k = 6, we should note that 33 out of the 35 possible hexaminoes can be
covered by only one pixel guard, and we can use an argument similar with the
case k = 4 or k = 5. Otherwise, if Pk requires two pixel guards, let A be the
pixel that generated Pk, and let B be the parent of A. If B is the only pixel
in Pm−k adjacent to Pk, then one can show that Pm−k has a pixel guard set
of cardinality f(m − 4) that contains B. Then B can also be used to guard
part of Pk, and we need only one additional guard. Otherwise, let C be a pixel

139

in Pm−k adjacent to Pk. Then C can adopt a descendant of A, reducing the
problem to the case k = 4 or k = 5, or C is a leaf, in which case we can
remove B and C from Pm−k, add them to Pk, and reduce the problem to the
case k = 8. (note that the minimality of k was not used in the case k = 8.)
If k = 7, let A be the pixel that generated Pk, and let B be its parent. Then
this case can also be reduced to the one of the cases k = 4, k = 5, or k = 8,
or we can show that B has exactly two children. In this last case, let C be the
other child of B, and let D be the parent of B. If in Tm we remove the edge
BC, and the edge that connects D with its parent, we can obtain a decom-
position of Pm into three polyominos. One of them is 9-polyomino. Using the
induction hypothesis and Lemma 1 we obtain:
g(Pm) ≤ g(P9) + g(Pl) + g(Pm−l−9) ≤ 2 + f(l) + f(m− l − 9)
≤ 2 + f(l +m− l − 9− 2) + 1 = 3 + f(m− 11) = f(m).
Finally, if k = 10, since k is the smallest that satisfies the property from
Lemma 2, we can assume that exactly one pixel of Pm−10 is adjacent to P10.
Then by removing this pixel from Pm−10, and adding it to P10, we can assume
that Pm is the union of an 11-polyomino P11 and an (m−11)-polyomino Pm−11.
Then g(Pm) ≤ g(P11)+g(Pm−11) ≤ 3+g(Pm−11) ≤ 3+f(m−11) = f(m). �

References

[1] V. Chvátal, A combinatorial theorem in plane geometry: J. Combin. Theory
Ser. B 18 (1975) 39–41.

[2] S. Fisk, A short proof of Chvátal’s watchman theorem: J. Combin. Theory Ser.
B 24 (1978) 374.

[3] M. Irfan, J. Iwerks, J. Kim, J. Mitchell, Guarding Polyominoes: 19th Annual
Workshop on Computational Geometry (2009).

[4] J. O’Rourke: Art Gallery Theorems. Oxford University Press, 1987.

[5] T.C. Shermer: Recent results in art gallery theorems, Proc. IEEE 80 (1992)
1384–1399.

[6] J. Urrutia: Art gallery and illumination problems, in: Handbook of
Computational Geometry, J.-R Sack and J. Urrutia (Eds.), Elsevier Science
B. V., 1999, pp. 973–1027.

140

Mixed connectivity of Cartesian graph

products and bundles

Rija Erveš a,b, Janez Žerovnik a,c

a Institute of Mathematics, Physics and Mechanics,
Jadranska 19, Ljubljana 1000, Slovenia.

b FCE, University of Maribor,
Smetanova 17, Maribor 2000, Slovenia.

c FME, University of Ljubljana,
Aškerčeva 6, Ljubljana 1000, Slovenia.

Key words: vertex connectivity, edge connectivity, mixed connectivity, Cartesian
graph bundle, Cartesian graph product, interconnection network, fault tolerance.

1 Introduction

An interconnection network should be fault tolerant, because practical com-
munication networks are exposed to failures of network components. Both
failures of nodes and failures of connections between them happen and it is
desirable that a network is robust in the sense that a limited number of fail-
ures does not break down the whole system. A lot of work has been done
on various aspects of network fault tolerance, see for example the survey [6]
and more recent papers [9,12,14]. In particular the fault diameter with faulty
vertices which was first studied in [10] and the edge fault diameter has been
determined for many important networks recently [1–4,7,8,11,13]. Usually ei-
ther only edge faults or only vertex faults are considered, while the case when
both edges and vertices may be faulty is studied rarely. In recent work on
fault diameter of Cartesian graph products and bundles [1–4], analogous re-
sults were found for both fault diameter and edge fault diameter. However,
the proofs for vertex and edge faults are independent, and our effort to see

Email addresses: rija.erves@uni-mb.si (Rija Erveš),
janez.zerovnik@imfm.uni-lj.si (Janez Žerovnik).

CTW2010, University of Cologne, Germany. May 25-27, 2010

how results in one case may imply the others was not successful. A natural
question is whether it is possible to design a uniform theory that would enable
unified proofs or provide tools to translate results for one type of faults to the
other. It is therefore of interest to study general relationships between invari-
ants under simultaneous vertex and edge faults. Some basic results on edge,
vertex and mixed fault diameters for general graphs appear in [5]. In order to
study the fault diameters of graph products and bundles under mixed faults,
it is important to understand the generalized connectivities. We define mixed
connectivity which generalizes both vertex and edge connectivity, and observe
some basic facts for any connected graph. Furthermore, we generalize results
of vertex connectivity and edge connectivity of Cartesian graph bundles [1,4].
As a corollary, mixed connectivity of the Cartesian product of finite number
of factors is given. In particular Theorem 3.2 improves the result on edge
connectivity of Cartesian graph products and bundles.

2 Mixed connectivity

Definition 2.1 Let G be any connected graph. A graph G is (p, q)+connected,
if G remains connected after removal of any p vertices and any q edges.

Any connected graph G is (0, 0)+connected, (p, 0)+connected for any p <
κ(G) and (0, q)+connected for any q < λ(G), where κ(G) and λ(G) are the
usual vertex- and edge-connectivities. In our notation (i, 0)+connected is the
same as (i + 1)-connected, i.e. the graph remains connected after removal of
any i vertices. Similarly, (0, j)+connected is the same as (j + 1)-edge con-
nected, i.e. the graph remains connected after removal of any j edges. Clearly,
if G is (p, q)+connected graph, then G is (p′, q′)+connected for any p′ ≤ p
and any q′ ≤ q. Furthermore, for any connected graph G with k < κ(G)
faulty vertices, at least k edges are not in functional. Roughly speaking, graph
G remains connected if any faulty vertex in G is replaced with any edge.
It is easy to prove that if a graph G is (p, q)+connected and p > 0, then
G is (p − 1, q + 1)+connected. Hence for p > 0 we have a chain of impli-
cations: (p, q)+connected =⇒ (p − 1, q + 1)+connected =⇒ . . . =⇒ (1, p −
1 + q)+connected =⇒ (0, p + q)+connected, that generalizes the well-known
proposition that any k-connected graph is also k-edge connected. Therefore,
a graph G is (p, q)+connected if and only if p < κ(G) and p+ q < λ(G).

If for a graph G κ(G) = λ(G) = k, then G is (i, j)+connected exactly
when i + j < k. However, if 2 ≤ κ(G) < λ(G), the question whether G is
(i, j)+connected for 1 ≤ i < κ(G) ≤ i+ j < λ(G) is not trivial. The example
below shows that in general knowing κ(G) and λ(G) is not enough to decide
whether G is (i, j)+connected.

142

Example 2.2 For graphs on Fig. 1 we have κ(G1) = κ(G2) = 2 and λ(G1) =
λ(G2) = 3. Both graphs are (1, 0)+connected =⇒ (0, 1)+connected, and (0, 2)+
connected. Graph G1 is not (1, 1)+connected, while graph G2 is.

Fig. 1. Graphs G1 and G2 from Example 2.2.

Both edge connectivity and vertex connectivity of a graph can be computed
in polyonimal time. Therefore it is interesting to ask

Problem. Let G be a graph and 1 ≤ i < κ(G) ≤ i + j < λ(G). Is there a
polynomial algorithm to decide whether G is (i, j)+connected?

3 Mixed connectivity of Cartesian graph products and bundles

Graph products and bundles are among frequently studied interconnection
network topologies. For example the meshes, tori, hypercubes and some of
their generalizations are Cartesian products. It is less known that some well-
known topologies are Cartesian graph bundles, i.e. some twisted hypercubes
and multiplicative circulant graphs. Graph bundles also appear as computer
topologies. A well known example is the twisted torus, a Cartesian graph
bundle with fibre C4 over base C4 is the ILLIAC IV architecture, a famous
supercomputer that inspired some modern multicomputer architectures. It
may be interesting to note that the original design was a graph bundle with
fibre C8 over base C8, but due to high cost a smaller version was build. A
Cartesian graph bundle is a generalization of graph cover and the Cartesian
graph product.

Definition 3.1 Let B and F be graphs. A graph G is a Cartesian graph
bundle with fibre F over the base graph B if there is a graph map p : G → B
such that for each vertex v ∈ V (B), p−1({v}) is isomorphic to F , and for each
edge e = uv ∈ E(B), p−1({e}) is isomorphic to F2K2.

We have generalized the result [1] on (vertex) connectivity and improved the
result [4] on edge connectivity:

Theorem 3.2 Let G be a Cartesian graph bundle with fibre F over the base
graph B, graph F be (pF , qF)+connected and graph B be (pB, qB)+connected.
Then Cartesian graph bundle G is (pF + pB + 1, qF + qB)+connected.

As the Cartesian product is a Cartesian graph bundle where all the isomor-

143

phisms between the fibres are identities, the statement about mixed connec-
tivity of Cartesian graph products of a finite number of factors follows easily
from Theorem 3.2.

Corollary 3.3 Let graphs Gi, i = 1, . . . , k, be (pi, qi)+connected. Then the
Cartesian graph product G = G12G22 . . .2Gk is (

∑
pi+k−1,

∑
qi)+connected.

References

[1] I. Banič, J. Žerovnik, Fault-diameter of Cartesian graph bundles, Inform.
Process. Lett. 100 (2006) 47–51.

[2] I. Banič, J. Žerovnik, Edge fault-diameter of Cartesian product of graphs,
Lecture Notes in Comput. Sci. 4474 (2007) 234-245.

[3] I. Banič, J. Žerovnik, Fault-diameter of Cartesian product of graphs, Adv. in
Appl. Math. 40 (2008) 98–106.

[4] I. Banič, R. Erveš, J. Žerovnik, The edge fault-diameter of Cartesian graph
bundles, European J. Combin. 30 (2009) 1054–1061.

[5] I. Banič, R. Erveš, J. Žerovnik, Edge, vertex and mixed fault diameters, Adv.
in Appl. Math. 43 (2009) 231–238.

[6] J.-C. Bermond, N. Honobono, C. Peyrat, Large Fault-tolerant Interconnection
Networks, Graphs Combin. 5 (1989) 107-123.

[7] K. Day, A. Al-Ayyoub, Minimal fault diameter for highly resilient product
networks, IEEE Trans. Parallel. Distrib. Syst. 11 (2000) 926–930.

[8] D. Z. Du, D. F. Hsu, Y. D. Lyuu, On the diameter vulnerability of kautz
digraphs, Discrete Math. 151 (2000) 81–85.

[9] C. H. Hung, L. H. Hsu, T. Y. Sung, On the Construction of Combined k-Fault-
Tolerant Hamiltonian Graphs, Networks 37 (2001) 165-170.

[10] M. Krishnamoorthy, B. Krishnamurty, Fault diameter of interconnection
networks, Comput. Math. Appl. 13 (1987) 577–582.

[11] S. C. Liaw, G. J. Chang, F. Cao, D. F. Hsu, Fault-tolerant routing in circulant
networks and cycle prefix networks, Ann Comb. 2 (1998) 165–172.

[12] C. M. Sun, C. N. Hung, H. M. Huang, L. H. Hsu, Y. D. Jou, Hamiltonian
Laceability of Faulty Hypercubes, Journal of Interconnection Networks 8 (2007)
133-145.

[13] M. Xu, J.-M. Xu, X.-M. Hou, Fault diameter of Cartesian product graphs,
Inform. Process. Lett. 93 (2005) 245–248.

[14] J. H. Yin, J. S. Li, G. L. Chen, C. Zhong, On the Fault-Tolerant Diameter and
Wide diameter of ω-Connected Graphs, Networks 45 (2005) 88–94.

144

Wide - sense nonblocking logd(N, 0, p) networks

Maja Rotovnik a Janez Žerovnik a,b

aIMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia
bFME, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia

Key words: switching network, WSNB, strong product, chromatic number

1 Introduction

One of the common architectures that are used in high-speed photonic and
electronic switching networks is the logd(N,m, p) switching network [1,2]. In
this paper we consider a special case of such network, logd(N, 0, p) network.
Usually, the architecture is accompanied with the control algorithm that works
online, i.e. after arrival of a connection request, a path through the network
is assigned that connects the input and output of the new connection [3,4]. A
switching network is wide sense nonblocking (WSNB) if a new call is always
routable as long as all previous requests were routed according to a given rout-
ing algorithm [5]. WSNB switching networks were first introduced by Beneš
[6] for symmetric 3−stage Clos network. He proved that C(n,m, 2) is WSNB

if and only if m ≥
⌊
3n
2

⌋
.

Here we introduce an auxiliary path graph of switching network such that the
number of required planes is the chromatic number of the path graph. From

the structure of the path graphs it follows that the minimal p is d⌊n
2 ⌋ − 1 for

every n. Furthermore, our analysis implies that at least p planes are needed
regardless of the control algorithm used.

A special case of this result was proved for a particular algorithm and even n
(for d = 2 in [7] and for general d in [8]). For other cases only bounds in terms
of so-called non-blocking conditions were known [5,9,10].

Email addresses: maja.rotovnik@imfm.si (Maja Rotovnik),
janez.zerovnik@imfm.uni-lj.si (Janez Žerovnik).

CTW2010, University of Cologne, Germany. May 25-27, 2010

2 Basic definitions and notations

The basic conponents of switching network are crossbar switches and links
which connect switches. The logd(N, 0, p) switching network consist of p copies
of logd(N, 0, 1), called the planes. Each plane contains n·dn−1 switches divided
into n stages. In each stage there are dn−1 switches and each switch has d inputs
and d outputs. Inputs and outputs are numbered 0, 1, ..., N − 1, N = dn, from
top to bottom, and stages are numbered 0, 1, ..., n from left to right. Examples
of log2(8, 0, 1), log2(16, 0, 1), and log3(27, 0, 1) switching networks are given on
figures 1, 2, and 3 respectively.

 1 2 3

 0
 1

 2

 3

 4

 5

 6

 7

 0
 1

 2

 3

 4

 5

 6

 7

Fig. 1. Example of switching network for n = 3 and d = 2.

 1 2 3 4

 0

 1

 2

 3

 4

 5

 6
 7

8

 9

 10
 11

 12
 13

 14
 15

 0

 1

 2

 3

 4

 5

 6
 7

8

 9

 10
 11

 12
 13

 14
 15

Fig. 2. Example of switching network for n = 4 and d = 2.

Definition: The path graph GP (n, d) of a switching network logd(N =
dn, 0, 1) is the graph with a vertex (i, j) for every connection 〈i, j〉 in the
switching network. Two vertices (i1, j1) and (i2, j2) are adjacent in GP if con-
nections 〈i1, j1〉 and 〈i2, j2〉 share an interstage link in switching network.

For example in figure 2 the connections < 0, 0 >,< 1, 5 > share the link
between stages 1 and 2, so they are adjacent. The connections < 0, 0 >,<
2, 9 > are independent because they do not share a link.

Proposition. The path graph GP (n, d) is in the worst case isomorphic to

146

 0

 1

 2

 3

 4

 5

 6

 7
8

 9

 10

 11

 12

 13
14

 15

 16

 17

 18

19

20

 21

 22
23

 24

 25

 26

 0

 1

 2

 3

 4

 5

 6

 8
7

 9

 10

 11

 12

14

 13

 15

 16

 17

 18

 20
19

 21

 23
22

 24

 25

 26

 1 2 3

Fig. 3. Example of switching network for n = 3 and d = 3.

the strong product (Kd2Kd)⊠Kdk−2 when n = 2k− 1, k ∈ N and isomorphic
to the dk copies of Kdk , when n = 2k, k ∈ N.

Proof ommited in the abstract.

Proposition. The number of planes p needed to make logd(N, 0, p) switching
network a WSBN is equal to the chromatic number of the path graph.

p = χ (GP (n, d))

(Proof ommited in the abstract.) Idea of proof: by construction of the path
graph, the vertices corresponding to independent connections are independent
and two vertices are connected when the connections share a link. Hence any
subset of connections can be can be divided into p = χ (GP (n, d)) independent
sets and each of them can be realized in a different plane. On the othere hand,
it is easy find a set of connections that forms a clique, so it can not be realized
in less than p planes without blocking.

Remark. From details of our construction one can find a formula which assigns
the color (the plane) on which it should be realized, so there is no complicated
algorithm for assigning the planes needed. Compare to [7].

Recall that the chromatic number of the strong product of graphs is less than
or equal to product of chromatic numbers of factors. Equality holds when
chromatic number of both factors is equal to their clique number [11].

Hence we have

147

Theorem: The logd(N, 0, p) switching network, n = logdN , is WSNB if and
only if

p ≥




dk, if n = 2k, k ∈ N

dk−1, if n = 2k − 1, k ∈ N.

References

[1] C. T. Lea. Multi-log2N networks and their applications in high-speed electronic
and photonic switching systems. IEEE Trans. Commun., 38 (1990) 1740–1749.

[2] C. T. Lea and D. J. Shyy. Tradeoff of horizontal decomposition versus vertical
stacking in rearrangeable nonblocking networks. IEEE Trans. Commun., 39,
(1991) 899904.

[3] W. Kabacinski, M. Michalski. Lower Bounds for WSNB Multi-log2N Switching
Networks. Conference on Telecommunications A-ICT 2005, (Lisbon,Portugal),
(2005) 202–206.

[4] G. Danilewicz. Wide-Sense Nonblocking Logd(N, 0, p) Multicast Switching
Networks. IEEE Trans. Commun., 55 (2007) 2193-2200.

[5] F. K. Hwang. The Mathematical Theory of Nonblocking Switching Networks.
World Scientific, Singapore, first ed., 1998; second ed., 2004.

[6] V. E. Beneš. Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press, New York, 1965.

[7] W. Kabacinski, M. Michalski. Wide-Sense Nonblocking log2(N, 0, p) Switching
Networks with Even Number of Stages. IEEE ICC 2005, (Seul, South Korea),
(2005).

[8] G. Danilewicz, W. Kabacinski, M. Michalski and M. Zal. Wide-Sense
Nonblocking Multiplane Baseline Switching Networks Composed of d × d
Switches. IEEE ICC 2007, (Glasgow, Scotland), (2007).

[9] A. Pattavina. Switching Theory - Architectures and Performance in Broadband
ATM Networks. John Wiley & Sons, England, 1998.

[10] W. Kabacinski. Nonblocking Electronic and Photonic Switching Fabrics.
Springer, 2005.

[11] W. Imrich, S. Klavžar. Product graphs: structure and recognition. JohnWiley
& Sons, New York, USA, 2000.

148

Efficient total domination

Oliver Schaudt

Institut für Informatik, Arbeitsgruppe Faigle/Schrader, Universität zu Köln
Weyertal 80, 50931 Cologne, Germany

Key words:
total domination, induced matchings, neighborhood hypergraphs

1 Introduction

All relevant graph classes and graph class inclusions not defined here are dis-
played in [1]. For each graph G, V (G) denotes its set of vertices.

Total domination has been introduced 1980 by Cockayne, Dawes and Hedet-
niemi in [2] and is intensively studied now. A good introduction to the theory
of (total) domination, giving a broad overview of the important results and
applications, is given in [5]. In the problem of total domination, one is in-
terested in determining the value γt(G) of a given graph G, defined as the
smallest size of a subset X ⊆ V (G) such that each vertex of G has at least
one neighbor in X.

LetG be a simple undirected graph. A setX ⊆ V (G) is said to be an efficiently
total dominating set of G, or an etd set, if each v ∈ V (G) is adjacent to exactly
one vertex in X. G is then said to be an efficiently total dominatable graph,
or G is etd. The corresponding decision problem is denoted by ETD. Let
1 denote the vector with all components equal to 1 of suitable dimension.
ETD can alternatively be defined as the class of graphs whose neighborhood
hypergraph has a perfect matching, as the class of graphs whose adjacency
matrix A accepts the equation Ax = 1 for some 01-vector x, and as the class
of graphs that have an induced matching, such that each vertex is adjacent to
exactly one matched vertex. There is some literature on efficient domination,
but in the case of efficient total domination, only a few papers have been
published so far (according to our knowledge).

Email address: schaudt@zpr.uni-koeln.de (Oliver Schaudt).

CTW2010, University of Cologne, Germany. May 25-27, 2010

A simple but important result mentioned in [5] is the following

Theorem 1 (See [5]) Let G be an etd graph. Each etd set X of G has car-
dinality γt(G).

We can therefore understand efficient total domination as an extremal case of
total domination. Furthermore, understanding the structure of efficiently total
dominatable graphs and the algorithmical complexity of the corresponding
decision problem may put some light on total domination, too.

2 Main results

Graph classes on which ETD is NP -complete can be obtained by reducing the
well known Exact Cover decision problem (EC) to ETD. Given an arbitrary
01-matrix A, EC asks for the 01-solvability of Ax = 1. It is possible to reduce
EC to ETD in the following way: Let I denote the identity matrix of suitable
dimension. Given a 01-matrix A, we define a function

A(X) =




X 0 0 A

0 0 I I

0 I 0 0

At I 0 0




(1)

and observe for each X, that A is in EC iff A(X) is in EC.

As A(0) is the adjacency matrix of a bipartite graph, A(0) is in EC iff this very
graph is in ETD. Let J denote the square matrix with all components equal to
1 of suitable dimension. A(J − I) is the adjacency matrix of a (1, 2)-colorable
chordal graph, i.e. a chordal graph which can be partitioned into a clique and
two independent sets, and A(J − I) is in EC iff this very graph is in ETD. As
EC is well known to be NP -complete, we conclude NP -completeness of ETD
restricted to bipartite graphs and to (1, 2)-colorable chordal graphs. As the
class of (1, 2)-colorable chordal graphs is only slightly bigger than the class of
split graphs (which are exactly the (1, 1)-colorable graphs) and ETD restricted
to split graphs is trivial, we see that the gap of complexity between the two
classes is big compared to their structural differences.

A further result is inspired by an idea stated by Lozin [7] in the context of
induced matchings. Let F be a (not necessarily finite) set of graphs. We set
K(F) as the supremum over the lengths of all paths in graphs of F , whose
inner vertices have degree 2. For given non negative integers i, j, k, a stari,j,k

150

Fig. 1. T3.

graph is constructed in the following way. Start with three paths consisting
of i, j and k vertices. Choose an endvertex of each path and connect these
to a single new vertex r. For example, a stark,0,0 is a path of length k and a
star1,1,1 is a claw.

Theorem 2 Let F be a set of graphs with finite K(F) such that there is no
graph of F whose every connected component is a stari,j,k. ETD restricted to
the class of bipartite F-free graphs is NP -complete.

Choosing F = {K1,4}, we see that ETD is NP -complete on the class of bipar-
tite graphs with maximum degree 3. Summarizing our results, we obtain the
following

Theorem 3 ETD is NP -complete when restricted to the following classes:

• planar bipartite graphs with maximum degree 3, bipartite graphs, compara-
bility graphs

• (1, 2)-colorable chordal graphs, chordal graphs, perfect graphs

In our research we observed that ETD is polynomial time solvable on various
classes. A first class can be obtained by using the property of each balanced
matrix A [3], that the corresponding set partitioning polytope {x : Ax =
1, 0 ≤ x ≤ 1} only has integral extreme points. Therefore ETD is polynomial
solvable on the class of graphs with balanced adjacency matrices (balanced
graphs, [3]), i.e. graphs which only induce cycles of length four.

Our main results are the polynomial solvability of ETD restricted to claw-free
graphs [8] and to T3-free chordal graphs [9] (T3 is displayed in Fig. 1).

ETD on claw-free graphs can be reduced to ETD on line graphs in two steps
in polynomial time. ETD on line graphs is reducible to the perfect matching
problem in certain auxiliary graphs in linear time. Therefore, ETD on claw-
free graphs is polynomial time solvable. Furthermore, etd claw-free graphs
are necessarily perfect. Thus, our result can be seen as an example for the
claim stated in [4], that claw-free perfect graphs often accept polynomial time
algorithms for problems which are NP -complete in general.

In the case of T3-free chordal graphs we use a polynomial time procedure
to label the vertices of the graph with 0 and 1, using the well known perfect
elimination ordering of chordal graphs. Each labeled vertex v is either in every

151

etd set of the graph, if v is labeled with 1, or in no etd set, if v is labeled with
0. The etd condition restricted to the unlabeled vertices forms, by T3-freeness,
an instance of 2-SAT. It therefore is a polynomial solvable problem.

Summarizing our results, we obtain the following

Theorem 4 ETD is polynomial solvable when restricted to the following classes:

• balanced graphs, chordal bipartite graphs, bipartite permutation graphs
• claw-free graphs, line graphs, line graphs of bipartite graphs
• T3-free chordal graphs, interval graphs, circular arc graphs
• strongly chordal graphs, doubly chordal graphs
• C4-free graphs, co-chordal graphs, split graphs = (1, 1)-colorable graphs
• P4-free graphs = cographs

If we compare this list with the list of time complexities for total domination
given in [6], we see some interesting differences: Total domination on the classes
of line graphs of bipartite graphs and split graphs is NP -complete, while
polynomially solvable in the case of ETD. On the other hand, ETD is NP -
complete restricted to the class of graphs with adjacency matrix A(0) while
total domination is trivially decidable on this class.

References

[1] A. Brandstädt, V.B. Le, J. Spinrad, Graph classes: a survey, SIAM Monographs
on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, 1999.

[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs,
Networks 10 (1980), pp. 211–219.

[3] M. Conforti, G. Cornuéjols and K. Vus̆ković, Balanced matrices, Discrete
Mathematics 306 (2006), pp. 2411–2437.

[4] R. Faudree, E. Flandrin and Z. Ryjàcek, Claw-free graphs – A survey, Discrete
Mathematics 164 (1997), pp. 87–147.

[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination
in Graphs, Marcel Dekker, Inc., New York, 1998.

[6] M.A. Henning, A survey of selected recent results on total domination in graphs,
Discrete Mathematics 309, (2009), pp. 32–63.

[7] V.V. Lozin, On maximum induced matchings in bipartite graphs, Information
Processing Letters 81 (2002), pp. 7–11.

[8] O. Schaudt, On weighted efficient total domination, submitted preprint.

[9] O. Schaudt, On efficient total domination, submitted preprint.

152

Progress on rainbow connection

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra, Technische Universität
Bergakademie Freiberg, 09596 Freiberg, Germany,

Ingo.Schiermeyer@tu-freiberg.de

Key words: Rainbow colouring, rainbow connectivity, extremal problem

1 Introduction

We use [1] for terminology and notation not defined here and consider finite
and simple graphs only.

An edge-coloured graph G is called rainbow-connected if any two vertices are
connected by a path whose edges have different colours. This concept of rain-
bow connection in graphs was recently introduced by Chartrand et al. in [4].
The rainbow connection number of a connected graph G, denoted rc(G), is
the smallest number of colours that are needed in order to make G rainbow
connected. An easy observation is that if G has n vertices then rc(G) ≤ n−1,
since one may colour the edges of a given spanning tree of G with different
colours, and colour the remaining edges with one of the already used colours.
Chartrand et al. computed the precise rainbow connection number of several
graph classes including complete multipartite graphs [4]. The rainbow connec-
tion number has been studied for further graph classes in [3] and for graphs
with fixed minimum degree in ([3], [7], [9]).

Rainbow connection has an interesting application for the secure transfer of
classified information between agencies (cf. [5]). While the information needs
to be protected since it relates to national security, there must also be proce-
dures that permit access between appropriate parties. This two-fold issue can
be addressed by assigning information transfer paths between agencies which
may have other agencies as intermediaries while requiring a large enough num-
ber of passwords and firewalls that is prohibitive to intruders, yet small enough
to manage (that is, enough so that one or more paths between every pair of
agencies have no password repeated). An immediate question arises: What
is the minimum number of passwords or firewalls needed that allows one or

CTW2010, University of Cologne, Germany. May 25-27, 2010

more secure paths between every two agencies so that the passwords along
each path are distinct?

The computational complexity of rainbow connectivity has been studied in
([2], [8]). It is proved that the computation of rc(G) is NP-hard ([2],[8]). In
fact it is already NP-complete to decide if rc(G) = 2, and in fact it is already
NP-complete to decide whether a given edge-coloured (with an unbounded
number of colours) graph is rainbow connected [2]. More generally it has been
shown in [8], that for any fixed k ≥ 2, deciding if rc(G) = k is NP-complete.

For the rainbow connection numbers of graphs the following results are known
(and obvious).

Proposition 1
Let G be a connected graph of order n. Then
1. 1 ≤ rc(G) ≤ n− 1,
2. rc(G) ≥ diam(G),
3. rc(G) = 1 ⇔ G is complete,
4. rc(G) = n− 1 ⇔ G is a tree.

2 Rainbow connection and minimum degree

Motivated by the fact that there are graphs with minimum degree 2 and with
rc(G) = n − 3 (just take two vertex-disjoint triangles and connect them by
a path of length n − 5), and by the fact that cliques have rc(G) = 1, it
is interesting to study the behaviour of rc(G) with respect to the minimum
degree δ(G). In [3] Caro et al. have shown the following theorem.

Theorem 1 If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) < 5n

6
.

They also made the following conjecture.

Conjecture 1 If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) < 3n

4
.

For 2-connected graphs Conjecture 1 is true. This follows from the following
proposition in [3].

Proposition 2 If G is a 2-connected graph with n vertices then rc(G) ≤ 2n
3
.

Corollary 2 If G is a 2-connected graph with n vertices then rc(G) ≤ 3n−1
4

154

for n ≥ 3.

Conjecture 1 has recently been proven in [9] by the following theorem.

Theorem 3 If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) ≤ 3n−1

4
.

The presented results motivate the following challenging problem.

Problem 1 For every k ≥ 2 find a minimal constant ck with 0 < ck ≤ 1 such
that rc(G) ≤ ck · n for all graphs G with minimum degree δ(G) ≥ k. Is it true
that ck = 3

k+1
for all k ≥ 2?

This is true for k = 2, 3 as shown before (c2 = 1 and c3 =
3
4
).

3 Rainbow connection and size of graphs

Another approach for achieving upper bounds is based on the size (number of
edges) of the graph. Those type of sufficient conditions are known as Erdős-
Gallai type results. Research on the following Erdős-Gallai type problem has
been started in [6].

Problem 2 For every k, 1 ≤ k ≤ n− 1, compute and minimize the function
f(n, k) with the following property: If |E(G)| ≥ f(n, k), then rc(G) ≤ k.

First we can show a lower bound for f(n, k).

Proposition 3
f(n, k) ≥

(
n−k+1

2

)
+ (k − 1).

Proof: We construct a graph Gk as follows: Take a Kn−k+1−e and denote the
two vertices of degree n−k−1 with u1 and u2. Now take a path Pk with vertices
labeled w1, w2, . . . , wk and identify the vertices u2 and w1. The resulting graph
Gk has order n and size |E(G)| =

(
n−k+1

2

)
+(k−2). For its diameter we obtain

d(u1, wk) = diam(G) = k + 1. Hence f(n, k) ≥
(
n−k+1

2

)
+ (k − 1). 2

Using Propositions 2 and 3 we can compute f(n, k) for k ∈ {1, n− 2, n− 1}.

Proposition 4
f(n, 1) =

(
n
2

)
,

f(n, n− 1) = n− 1,
f(n, n− 2) = n.

155

For k = 2 we obtain f(n, 2) =
(
n−1
2

)
+1 by the following stronger result shown

in [6].

Theorem 4 Let G be a connected graph of order n and size m. If
(
n−1
2

)
+1 ≤

m ≤
(
n
2

)
− 1, then rc(G) = 2.

References

[1] J. A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.

[2] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and
algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in
Journal of Combinatorial Optimization.

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster On rainbow connection,
The Electronic Journal of Combinatorics 15 (2008), #57.

[4] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection
in graphs, Math. Bohemica 133 (2008) 85-98.

[5] A. B. Ericksen, A matter of security, Graduating Engineer & Computer Careers
(2007) 24-28.

[6] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two,
preprint 2009, submitted to Discussiones Mathematicae Graph Theory.

[7] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most)
reciprocal to its minimum degree, Preprint 2009.

[8] V. B. Le and Z. Tuza, Finding optimal rainbow connection is hard, Preprint
2009.

[9] I. Schiermeyer, Rainbow connection in graphs with minimum degree three,
IWOCA 2009, LNCS 5874 (2009) 432-437.

156

An Optimal Algorithm for the Indirect

Covering Subtree Problem

Joachim Spoerhase

Lehrstuhl für Informatik I, Universität Würzburg, Am Hubland, 97074 Würzburg,
Germany

Key words: Graph algorithm, coverage, medianoid, tree, efficient algorithm

Introduction Suppose that a company wants to open a number r of fa-
cilities in a given network, modeled by an edge-weighted graph. A potential
customer u, located at some node of the graph, is willing to use the service
provided by that company if the cost thereby incurred is limited by some
bound ̺(u). The costs are modeled by shortest-path distances in the under-
lying graph, that is, the cost for customer u equals the distance to the closest
server of the company. For example, the distances may represent transporta-
tion costs or travel times in a logistical network, but also response times in a
communication network. If the company serves customer u—that is, his dis-
tance to the closest server does not exceed ̺(u)—it earns a profit of w(u),
which generally corresponds to the demand of the customer. The goal of the
company is to identify r locations (nodes of the graph) for its facilities such
that the total profit is maximized.

The resulting optimization problem, calledmaximum coverage location [MZH83],
is NP-hard for arbitrary graphs. It can, however, be solved in time O(rn2) on
trees [Tam96]. As trees form the sparsest (and thus cheapest) networks con-
necting a given set of nodes they play an important role in many areas of
application such as logistical and communication networks. For example, we
may think of backbones of a computer network, which are often tree-shaped.
This is the case that we investigate in this paper.

In the past years there has been an increasing interest in location problems
combined with connectivity requirements (for example, connected dominating
set, or connected facility location). We follow this line of research and consider
a variant of maximum coverage location on a tree where the facilities are

Email address: joachim.spoerhase@uni-wuerzburg.de (Joachim Spoerhase).

CTW2010, University of Cologne, Germany. May 25-27, 2010

required to form a connected subgraph, that is, a subtree of the input tree.
Albeit consisting of a plurality of nodes, such a subtree is considered as a
single, tree-shaped facility. The cost of this facility is given by its total edge
weight. (The number of nodes within the facility is not bounded.) The goal
is to identify a tree-shaped facility that maximizes the net profit, that is, the
income produced by the customers minus the setup cost of the facility. As
possible application we may think of a company that wants to establish a
high-bandwidth core (tree-shaped facility) in a given communication network
in order to provide some service to potential customers. A customer is only
willing to pay for the service if the response time is sufficiently low.

Kim et al. [KLTW96] introduce the indirect covering subtree problem, which
can be used to model the above scenario. But instead of assigning to each
customer a profit w(u) they assume that a penalty π(u) is imposed on the
company if customer u is not served. The company aims at minimizing the
sum of setup cost and the total penalty cost. It should be clear that both
formulations are equivalent.

Problem Definition The input of the indirect covering subtree problem is
an undirected tree T = (V,E) with non-negative edge weights c : E → R≥0.
The edge weights induce a distance function d : V ×V → R≥0 on the node set.
Each node is associated with a radius ̺(u) and a non-negative penalty π(u).
Consider a subtree Y of T . A node u is said to be covered (indirectly) by Y if
d(u, Y) ≤ ̺(u), that is, if u lies within distance ̺(u) from Y . If u is not covered
by Y , then u imposes a penalty π(u) on Y . If U ⊆ V is a set of nodes then
p(U, Y) :=

∑{ π(u) | u ∈ U and d(u, Y) > ̺(u) } denotes the penalty imposed
on Y by U . The total penalty imposed on Y is given by p(Y) := p(V, Y). The
indirect covering subtree problem asks for a subtree Y of T such that the total
cost c(Y) + p(Y), given by the sum of setup and penalty cost, is minimum
among all subtrees of T .

If we require that Y be a node rather than a subtree we obtain the single
maximum coverage location problem [MZH83,SW09a]. It is not hard to see
that single maximum coverage location is a special case of indirect covering
subtree. (Scale all edge lengths and radii with a sufficiently large factor while
leaving the penalties unchanged.)

Previous Results The maximum coverage location problem (allowing the
placement of an arbitrary set of r nodes) is NP-hard on general graphs [MZH83]
while it can be solved in time O(rn2) on trees [Tam96]. This leads to an
O(n2) algorithm for the single maximum coverage location problem on trees
by setting r = 1. Kim et al. [KLTW96] provide a faster algorithm running

158

in O(n log2 n). Their algorithm works even for the more general indirect cov-
ering subtree problem. Recently a slightly faster O(n log2 n/ log logn)-time
algorithm for single maximum coverage location has been reported [SW09a].

Our Contribution We propose an O(n logn) algorithm for indirect cov-
ering subtree, which is faster than the previously best algorithms for that
problem and single maximum coverage location on trees. We complement this
result with a matching lower bound on the running showing that our algorithm
is optimal.

Our result also implies faster algorithms for competitive location problems
[Hak83]. Specifically, we obtain an O(n logn) algorithm for (1, X)-medianoid
and O(n2 logn logw(T)) and O(n2 logn logw(T) logD) algorithms for the dis-
crete and absolute (1, p)-centroid problems on trees, respectively. Here, w(T)
denotes the total node weight of the tree and D is the maximum edge weight.
The previously best algorithms are slower by factor of O(logn/ log log n)
[SW09c].

Sketch of the Algorithm We employ the algorithmic framework used by
Kim et al. [KLTW96]. We improve, however, one of their core routines by us-
ing a more sophisticated technique to subdivide trees. This technique, which
we call two-terminal subtree subdivision, is a simplification of the recursive
coarsening strategy [SW09a] used for solving single maximum coverage loca-
tion on a tree. The source of our speedup is that we manage to avoid explicitly
sorting the nodes according to their distances and radii during the recursion,
which has been necessary in the coarsening approach and also in the original
algorithm of Kim et al. A further advantage of our algorithm is that it is a lot
simpler than the recursive coarsening algorithm.

The two-terminal subtree technique has proved successful also for other lo-
cation problems [SW10,SW09b]. We believe that there are further problem
classes where it can be applied.

Our algorithm is based on the so-called bitree model [KLTW96]. A bitree is a
directed graph T ′ that can be derived from an undirected tree T by replacing
any edge (u, v) of T with a pair of anti-parallel arcs (u, v) and (v, u). With each
arc (u, v) of such a bitree T ′ we associate a cost cT ′(u, v). But in contrast to the
edge costs in the indirect covering subtree problem we allow these arc costs to
be negative and asymmetric. This induces a distance function dT ′ : V ×V → R
where dT ′(u, v) is the length of the unique u-v-path in T ′. If v is a node and U a
set of nodes of T ′ we define p′(U, v) :=

∑{ π(u) | u ∈ U and dT ′(u, v) > ̺(u) }
and p′(v) := p′(V, v) similar to the undirected case.

159

Kim et al. reduce the indirect covering subtree problem to the computation
of p′(v) for all nodes of a given bitree. Specifically, they show that if p′(v)
can be computed in time O(h(n)) for all nodes v of an arbitrary bitree then
the indirect covering subtree problem can be solved in the same asymptotic
running time on undirected trees. They develop a routine to compute the p′(·)-
values of an bitree in total time O(n log2 n). Thus they can also solve indirect
covering subtree in O(n log2 n).

We suggest an algorithm that computes all p′(·)-values of an arbitrary bitree
in O(n logn), which yields our main result.

We assume that any node of the given bitree T ′ has out-degree at most three.
It is not hard to see, that this is no proper restriction. If s and t are distinct
nodes then T ′

st denotes the maximal sub-bitree of T ′ having s and t as leaves.
We call s and t terminals of T ′

st and T ′
st two-terminal sub-bitree (TTSB) of T ′.

Our algorithm divides the input bitree T ′ recursively into TTSBs. Since we
are dealing with a degree-bounded bitree we can subdivide any TTSB T ′

st into
five (or fewer) TTSBs, called child TTSBs of T ′

st, which have bounded size.

Lemma 1 Let T ′
st be a TTSB with maximum out-degree three. Then T ′

st can
be partitioned into five (or fewer) arc-disjoint TTSBs each of which having at
most 1

2
|T ′

st|+ 1 nodes. This subdivision can be computed in O(|T ′
st|) time. 2

Consider a TTSB T ′
st. We introduce the lists Ld,s(T

′
st) and L̺,s(T

′
st). Both lists

contain all nodes v of T ′
st sorted in increasing order with respect to the values

dT ′(s, v) and ̺(v)− dT ′(v, s), respectively. The lists Ld,t(T
′
st) and L̺,t(T

′
st) are

defined symmetrically.

Our algorithm computes p′(v, T ′
st) for all v ∈ T ′

st as well as the four lists
Ld,s(T

′
st), Ld,t(T

′
st), L̺,s(T

′
st) and L̺,t(T

′
st) for any TTSB T ′

st occurring during
the recursion. We show that this information can be propagated inductively
from child towards parent TTSBs such that we will have computed p′(·, T ′) =
p′(·) at the top of the recursion. One such propagation step takes time linear
in the size |T ′

st| of the current TTSB T ′
st. Together with Lemma 1 we infer.

Theorem 2 The indirect covering subtree problem and hence also single max-
imum coverage location on a tree can be solved in time O(n logn). 2

We complement our algorithm with a lower bound Ω(n log n) on the running
time for solving single maximum coverage location on a tree. To this end we
introduce a variant of the set disjointness problem, which needs Ω(n log n) time
to be recognized on certain real-number RAMs [BAG01]. Finally, we provide a
linear time reduction from this problem to single maximum coverage location
on a tree.

160

References

[BAG01] A. M. Ben-Amram and Z. Galil. Topological lower bounds on algebraic
random access machines. SIAM Journal on Computing, 31(3):722–761,
2001.

[Hak83] S. L. Hakimi. On locating new facilities in a competitive environment.
European Journal of Operational Research, 12:29–35, 1983.

[KLTW96] T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the location of a
tree-shaped facility. Networks, 28(3):167–175, 1996.

[MZH83] N. Megiddo, E. Zemel, and S. Hakimi. The maximum coverage location
problem. SIAM Journal on Algebraic and Discrete Methods, 4(2):253–
261, 1983.

[SW09a] J. Spoerhase and H.-C. Wirth. An O(n (log n)2/ log log n) algorithm for
the single maximum coverage location or the (1,Xp)-medianoid problem
on trees. Information Processing Letters, 109(8):391–394, 2009.

[SW09b] J. Spoerhase and H.-C. Wirth. Optimally computing all solutions of
Stackelberg with parametric prices and of general monotonous gain
functions on a tree. Journal of Discrete Algorithms, 7(2):256–266, 2009.

[SW09c] J. Spoerhase and H.-C. Wirth. (r, p)-centroid problems on paths and
trees. Theoretical Computer Science, 410(47–49):5128–5137, 2009.

[SW10] J. Spoerhase and H.-C. Wirth. Relaxed voting and competitive
location under monotonous gain functions on trees. Discrete Applied
Mathematics, 158:361–373, 2010.

[Tam96] A. Tamir. An O(pn2) algorithm for the p-median and related problems
on tree graphs. Operations Research Letters, 19:59–64, 1996.

161

hh

162

Radio Labeling Cartesian Graph Products

Cynthia Wyels a

aCalifornia State University Channel Islands

Maggy Tomova b

bUniversity of Iowa

Key words: radio number, radio labeling, Cartesian product

1 Introduction

Radio labeling is derived from the assignment of radio frequencies (channels)
to a set of transmitters. The frequencies assigned depend on the geographical
distance between the transmitters: the closer two transmitters are, the greater
the potential for interference between their signals. Thus when the distance
between two transmitters is small, the difference in the frequencies assigned
must be relatively large, whereas two transmitters at a large distance may be
assigned frequencies with a small difference.

The use of graphs to model the “channel assignment” problem was first pro-
posed by Hale in 1980 [5]. Several schemes for distance labeling were subse-
quently introduced and have been extensively studied; Chartrand et al intro-
duced the variation known as radio labeling in 2001 [2].

In the graph model of the channel assignment problem, the vertices correspond
to the transmitters, and graph distance plays the role of geographical distance.
We assume all graphs are connected and simple. The distance between two
vertices u and v of a graph G, d(u, v), is the length of a shortest path between
u and v. The diameter of G, diam(G), is the maximum distance, taken over
all pairs of vertices of G. A radio labeling of a graph G is then defined to be
a function c : V (G) → Z+ satisfying

d(u, v) + |c(u)− c(v)| ≥ 1 + diam(G) (1)

for all distinct pairs of vertices u, v ∈ V (G). The span of a radio labeling c is
the maximum integer assigned by c. The radio number of a graph G, rn(G),

CTW2010, University of Cologne, Germany. May 25-27, 2010

is the minumum span, taken over all radio labelings of G 1 .

As Liu and Zhu write, “It is surprising that determining the radio number
seems a difficult problem even for some basic families of graphs.” [9] The
radio number is known exactly for only a few graph families, including paths
and cycles [9] and the squares of paths [8] and cycles [7]; wheels and gears
[3], some generalized prisms [11], and Cartesian products of a cycle with itself
[10]. Meanwhile, bounds for the radio numbers of trees [6], ladders [4], and
square grids [1] have been identified, while the radio number of cubes of the
cycles C3

n for n ≤ 20 and n ≡ 0, 2, or 4 (mod 6) is known [12].

In this investigation we focus as follows:

Question: What may be said about the radio number of the Cartesian product
of two graphs?

The Cartesian product of two graphs G and H has vertex set V (G�H) =
V (G) × V (H) = {(g, h) | g ∈ V (G) and h ∈ V (H)}. The edges of G�H
consist of those pairs of vertices {(g, h), (g′, h′)} satisfying g = g′ and h is
adjacent to h′ in H or h = h′ and g is adjacent to g′ in G. We note the
following facts about Cartesian products:

• The order of a product is the product of the orders of the factor graphs,
i.e., G�H has |V (G)| · |V (H)| vertices.

• Distances in products are sums of distances between corresponding vertices
in factor graphs, i.e., dG�H ((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2).

• In particular, the diameter of a product is the sum of the diameters of the
factors, i.e., diam(G�H) = diam(G) + diam(H).

In Section 2 we provide three lower bounds for the radio number of a Cartesian
product, each of which outperforms the others in specific cases. Two upper
bounds are provided in Section 3, along with some comments as to their effi-
cacy.

2 Lower Bounds

Our first bound follows directly from the fact that a radio labeling is an
injection. As such, the span of any radio labeling may never be less than the
number of vertices of the associated graph.

1 We use the convention, established in [2], that the co-domain of a radio labeling
is Z+ = {1, 2, . . .}. Some authors use {0, 1, 2, . . .} as the co-domain; radio num-
bers specified using the non-negative integers as co-domain are one less than those
determined using the positive integers.

164

Theorem 1 (Vertex Lower Bound)

rn(G�H) ≥ |V (G)| · |V (H)|.

This lower bound is tight for the product of the Petersen graph with itself.

The second lower bound is stated in terms of the radio numbers of the factor
graphs.

Theorem 2 (Radio Number Lower Bound)Let G and H be graphs.

rn(G�H) ≥ rn(G) + rn(H)− 1.

This bound outperforms the Vertex Lower Bound on prism graphs, which are
products of 2-paths with n-cycles. These prism graphs have 2n vertices (so the
Vertex Lower Bound states the radio number is not less than 2n); the Radio
Lower Bound gives a lower bound that is O(n2).

To specify the third lower bound, an additional term, the “gap,” must be
introduced. Essentially, the gap ofG is the smallest possible difference between
the ith and (i+ 2)nd largest labels in a radio labeling of G.

Definition 3 Let c be a radio labeling of a graph G, and let {x1, x2, . . . , xn}
be the vertices of G, arranged so that c(xi) < c(xj) whenever i < j. Define
φ(G, c) to be the smallest integer satisfying φ(G, c) ≥ c(xi+2) − c(xi) for all
i ∈ {1, 2, . . . , n− 2}. Finally, define φ(G) to be the minimum of φ(G, c) taken
over all radio labelings c of G.

Our third lower bound is expressed in terms of this gap.

Theorem 4 (Gap Lower Bound)

rn(G�H) ≥
(⌊

1

2
|V (G)| · |V (H)|

⌋
− 1

)
(φ(G) + φ(H)− 2) + a,

where a = 1 when |V (G)| · |V (H)| is odd and a = 2 otherwise.

This lower bound is again sharp for the product of the Petersen graph with
itself. Moreover, it is significantly more effective than the Vertex and Radio
Lower Bounds on products of cycles with themselves and products of paths
with themselves. The Vertex and Radio Lower Bounds give lower bounds that
are O(n2) for each; the Gap Lower Bound gives O(n3) bounds. (We note that
the radio number of both families of products has been shown to be O(n3) [1],
[10].)

165

3 Upper Bounds

In this section we turn our attention to determining upper bounds for radio
numbers of Cartesian products of graphs. The radio condition (1) depends on
distance and diameter; without knowledge of specific distances between pairs
of vertices in the product graph, it is unreasonable to expect upper bounds to
be sharp. Nonetheless, we present two upper bounds with varied hypotheses.

Theorem 5 Let G be a graph with diameter 2 and rn(G) = |V (G)| = n.
Then

rn(G�G) ≤ n2 + 2(2n− 2) +
(
2
⌊
n

2

⌋
− 1

) ⌊
n− 1

2

⌋
.

The statement of the next theorem is similar in spirit.

Theorem 6 Assume G and H are graphs satisfying rn(G) = |V (G)| = n,
rn(H) = |V (H)| = m, and diam(G)− diam(H) ≥ 2. Then

rn(G�H) ≤ diam(G)(n+m− 2) + 2mn− 2m− 4n+ a,

where a = 7 when m and n have opposite parity, a = 8 when both m and n
are odd, and a = 6 when both m and n are even.

To establish both of these theorems, one must replace the radio condition (1)
with conditions sufficient for labelings of the products to be radio labelings.
As nothing is assumed regarding distances between vertices, the bounds nec-
essarily involve products of the diameters of the factor graphs. It would be of
interest to investigate additional upper bounds resulting from removing the
hypotheses that the factor graphs have the smallest possible radio numbers,
or by including additional hypotheses regarding structure of the factor graphs.

References

[1] Calles, L., Gomez, H., Tomova, M., and Wyels, C., Bounds for the radio number
of square grids, in preparation.

[2] Chartrand, G., Erwin, D., Zhang, P. and Harary, F., Radio labelings of graphs,
Bull. Inst. Combin. Appl., 33 (2001), 77–85.

[3] Fernandez, C., Flores, A., Tomova, M., and Wyels, C., The radio number of
gear graphs, preprint available at front.math.ucdavis.edu/0809.2623.

[4] Flores, J., Lewis, K., Tomova, M., and Wyels, C., The radio number of ladder
graphs, in preparation.

166

[5] Hale, W.K.,Frequency assignment: theory and application, Proc. IEEE, 68
(1980), 1497–1514.

[6] Liu, D.D.-F., Radio number for trees, Discrete Math. 308 (2008), no. 7, 1153–
1164.

[7] Liu, D.D.-F., and Xie, M., Radio number for square cycles, Congr. Numer. 169
(2004), 105125.

[8] Liu, D.D.-F., and Xie, M., Radio number for square paths, preprint available
at www.calstatela.edu/faculty/dliu/ArsComFinal.pdf.

[9] Liu, D.D.-F., Zhu, X., Multilevel distance labelings for paths and cycles, SIAM
J. Discrete Math. 19 (2005), No. 3, 610–621.

[10] Morris-Rivera, M., Tomova, M., Wyels, C., and Yeager, A., The Radio Number
of Cn�Cn, preprint available at faculty.csuci.edu/cynthia.wyels/REU/aids.htm.

[11] Ortiz, J.P., Martinez, P., Tomova, M., and Wyels, C., Radio numbers of some
generalized prism graphs, preprint available at
faculty.csuci.edu/cynthia.wyels/REU/aids.htm.

[12] Sooryanarayana, B., and Raghunath, P., Radio labeling of cube of a cycle, Far
East J. Appl. Math. 29 (2007), no. 1, 113–147.

167

hh

168

Cycle embedding in alternating group graphs

with faulty vertices and faulty edges

Ping-Ying Tsai ∗

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan, ROC

Key words: Alternating group graph, Pancyclicity, Fault-tolerant, Cayley graph,
Cycle embedding, Interconnection network.

1 Introduction

Let G be a graph with the vertex set V (G) and the edge set E(G). Unless
otherwise stated, we follow [2] for graph terminologies and notations. A path
Pv0,vk = 〈v0, v1, . . . , vk〉 is a sequence of distinct vertices except possibly v0 = vk
such that every two consecutive vertices are adjacent. The length of a path is
the number of edges on the path. The distance between u and v is denoted by
d(u, v), which is the length of a shortest path between u and v. A cycle is a
special path with at least three vertices such that the first vertex is the same
as the last one. A cycle of length l is referred to as an l-cycle.

An interconnection network is usually modeled as an undirected simple graph,
where the vertices represent processors and the edges represent communica-
tion links between processors. Study of the topological properties of an in-
terconnection network is an important part of the study of any parallel or
distributed system. The alternating group graph [8], which is an instance of
Cayley graphs, is suitable to serve as a network because of its scalability and
other favorable properties, e.g., regularity, recursiveness, symmetry, subloga-
rithmic degree and diameter, and maximal fault tolerance.

Let u = a1a2 · · ·an be a permutation of 1, 2, . . . , n, i.e., ai ∈ {1, 2, . . . , n} and
ai 6= aj for i 6= j. A pair of symbols ai and aj of u are said to be an inversion if
ai < aj whenever i > j. An even permutation is a permutation that contains
an even number of inversions. Let An denote the set of all even permutations

∗ corresponding author
Email address: bytsai@math.sinica.edu.tw (Ping-Ying Tsai).

CTW2010, University of Cologne, Germany. May 25-27, 2010

over {1, 2, . . . , n}. For 3 ≤ i ≤ n, we define two operations, g+i and g−i , on An

by setting ug+i (respectively, ug−i) to be the permutation obtained from u by
rotating the symbols a1, a2, ai from left to right (respectively, from right to
left), while retaining the other n−3 symbols stationary. For example, we have
12345g+4 = 41325 and 12345g−4 = 24315. The n-dimensional alternating group
graph AGn, has the vertex set V (AGn) = An and the edge set E(AGn) =
{(u, v)|u, v ∈ V (AGn) and v = ug+i or v = ug−i for some 3 ≤ i ≤ n}.
It is not difficult to see that AGn is regular with vertex degree 2(n − 2),
|V (AGn)| = n!/2, and |E(AGn)| = (n − 2)n!/2. In addition, AGn is both
vertex symmetric and edge symmetric [8].

For n ≥ 3 and 1 ≤ i ≤ n, let A(i)
n be the subset of An that consists of all even

permutations with element i in the rightmost position, and let AG(i)
n be the

subgraph of AGn induced by A(i)
n . Obviously, AG(i)

n is isomorphic to AGn−1

for every i ∈ {1, 2, . . . , n}. Due to the hierarchical structure, AGn can also be
defined recursively as follows. AGn is constructed from n disjoint copies of (n−
1)-dimensional alternating group graphs AG(i)

n for i ∈ {1, 2, . . . , n} such that
AG(i)

n and AG(j)
n , i 6= j, are connected by (n− 2)! edges, called external edges,

of the form (kj · · · i, ik · · · j) or (jk · · · i, ki · · · j) for k ∈ {1, 2, . . . , n} \ {i, j}.
By contrast, edges joining vertices in the same subgraph AG(i)

n are called
internal edges. In particular, for each internal edge (u, v) with u = kj · · · i
and v = jk′ · · · i in AG(i)

n , there exist two adjacent vertices s = ik · · · j and
t = k′i · · · j in AG(j)

n such that s = ug+n , t = vg−n , and 〈u, s, t, v, u〉 forms a
4-cycle in AGn. For convenience, such a property is called the 4-cycle structure
of (u, v). Note that the pair of vertices s and t is uniquely determined by the
4-cycle structure of (u, v). As a result, every vertex u ∈ V (AG(i)

n) is connected
to exactly 2 external edges and 2n− 6 internal edges.

A path (or cycle) in G is called a Hamiltonian path (or Hamiltonian cycle) if
it contains every vertex of G exactly once. A graph G is called Hamiltonian
if it has a Hamiltonian cycle. G is called Hamiltonian-connected if every two
vertices of G are connected by a Hamiltonian path. For an integer r ≥ 3, G
is called r-pancyclic if it contains an l-cycle for each l with r ≤ l ≤ |V (G)|.
In particular, G is called vertex r-pancyclic (or edge r-pancyclic) if every ver-
tex (or edge) of G belongs to an l-cycle for each l with r ≤ l ≤ |V (G)|. A
3-pancyclic graph, a vertex 3-pancyclic graph, and an edge 3-pancyclic graph
are called pancyclic, vertex-pancyclic, and edge-pancyclic, respectively. Explor-
ing the pancyclicity of the given graph has attracted a lot of mathematicians
[1,9,10]. Recently, some researchers have focused on the problem on intercon-
nection networks because networks with cycle topology are suitable for design-
ing simple algorithms with low communication costs (for example, [5,6,13,16]).

A graph G is panconnected if, for any two distinct vertices u, v ∈ V (G) and
for each integer l with d(u, v) ≤ l ≤ |V (G)| − 1, there is a Pu,v of length l in
G. It was shown in [4] that the alternating group graph is panconnected.

170

Lemma 1 ([4]) For n ≥ 3, AGn is panconnected.

Since faults may occur in networks, the consideration of fault-tolerance ability
is a major factor in evaluating the performance of networks. Cycle embedding
is also concerned extensively in many interconnection networks with faulty
elements [7,11,14]. Suppose Fv ⊂ V (G), Fe ⊂ E(G), and F = Fv∪Fe. A graph
G is k-vertex-fault-tolerant pancyclic if G − Fv remains pancyclic whenever
|Fv| ≤ k. A graph G is called k-edge-fault-tolerant pancyclic if G − Fe is
pancyclic whenever |Fe| ≤ k. A graph G is called k-fault-tolerant pancyclic
if G − F remains pancyclic when |F | ≤ k. The notion for k-fault-tolerant
Hamiltonian, k-fault-tolerant Hamiltonian-connected, k-fault-tolerant vertex r-
pancyclic, and k-fault-tolerant edge r-pancyclic can also be defined similarly.

Lemma 2 ([3]) AGn is (n−4)-vertex-fault-tolerant edge 4-pancyclic and (n−
3)-vertex-fault-tolerant vertex-pancyclic, where n ≥ 4.

Lemma 3 ([15]) AGn is (2n−6)-vertex-fault-tolerant pancyclic, where n ≥ 3.

Lemma 4 ([12]) AGn is (2n− 6)-edge-fault-tolerant pancyclic, where n ≥ 3.

Lemma 5 ([12]) AGn is (2n−7)-fault-tolerant Hamiltonian-connected, where
n ≥ 4.

2 Main results

We improve previous results in Lemma 2, Lemma 3, and Lemma 4, by showing
that the n-dimensional alternating group graph AGn is (n− 4)-fault-tolerant
edge 4-pancyclic, (n − 3)-fault-tolerant vertex-pancyclic, and (2n − 6)-fault-
tolerant pancyclic, while considering both faulty vertices and faulty edges. All
the results we achieved here are optimal with respect to the number of faulty
elements tolerated.

Theorem 1 AGn is (n− 4)-fault-tolerant edge 4-pancyclic, where n ≥ 4.

Theorem 2 AGn is (n− 3)-fault-tolerant vertex-pancyclic, where n ≥ 3.

Theorem 3 AGn is (2n− 6)-fault-tolerant pancyclic, where n ≥ 3.

Since a graph is Hamiltonian if it is pancyclic, we have the following Corollary.

Corollary 1 AGn is (2n− 6)-fault-tolerant Hamiltonian, where n ≥ 3.

171

References

[1] J. A. Bondy. Pancyclic graphs. Journal of Combinatorial Theory - Series B,
11(1):80-84, 1971.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts
in Mathematics. Springer, Berlin, 2008.

[3] J. M. Chang and J. S. Yang. Fault-tolerant cycle-embedding in alternating
group graphs. Applied Mathematics and Computation, 197(2):760-767, 2008.

[4] J. M. Chang, J. S. Yang, Y. L. Wang, and Y. Cheng. Panconnectivity,
fault-tolerant Hamiltonicity and Hamiltonian-Connectivity in alternating group
graphs. Networks, 44(4):302-310, 2004.

[5] A. Germa, M. C. Heydemann, and D. Sotteau. Cycles in the cube-connected
cycles graph. Discrete Applied Mathematics, 83(1-3):135-155, 1998.

[6] S. Y. Hsieh and J. Y. Shiu. Cycle embedding of augmented cubes. Applied
Mathematics and Computation, 191(2):314-319, 2007.

[7] S. Y. Hsieh and T. H. Shen. Edge-bipancyclicity of a hypercube with faulty
vertices and edges. Discrete Applied Mathematics, 156(10):1802-1808, 2008.

[8] J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall. A new class of interconnection
networks based on the alternating group. Networks, 23:315-326, 1993.

[9] M. Kouider and A. Marczyk. On pancyclism in Hamiltonian graphs. Discrete
Mathematics, 251(1-3):119-127, 2002.

[10] B. Randerath, I. Schiermeyer, M. Tewes, and L. Volkmann. Vertex pancyclic
graphs. Discrete Applied Mathematics, 120(1-3):219-237, 2002.

[11] C. H. Tsai. Fault-tolerant cycles embedded in hypercubes with mixed link and
node failures. Applied Mathematics Letters, 21(8):855-860, 2008.

[12] P. Y. Tsai, J. S. Fu, and G. H. Chen. Edge-fault-tolerant pancyclicity of
alternating group graphs. Networks, 53(3):307-313, 2009.

[13] J. M. Xu and M. J. Ma. Cycles in folded hypercubes. Applied Mathematics
Letters, 19(2):140-145, 2006.

[14] M. Xu, X. D. Hu, and Q. Zhu. Edge-bipancyclicity of star graphs under edge-
fault tolerant. Applied Mathematics and Computation, 183(2):972-979, 2006.

[15] Z. J. Xue and S. Y. Liu. An optimal result on fault-tolerant cycle-embedding
in alternating group graphs. Information Processing Letters, 109(21-22):1197-
1201, 2009.

[16] X. F. Yang, G. M. Megson, and D. J. Evans. Locally twisted cubes are 4-
pancyclic. Applied Mathematics Letters, 17(8):919-925, 2004.

172

On Reed’s Conjecture in Triangle-Free

Graphs

Vera Weil

Institut für Informatik, Arbeitsgruppe Faigle/Schrader (AFS),
University of Cologne, Weyertal 80, 50931 Cologne, Germany

Key words: Coloring, Reed’s Conjecture, Minimal Counterexample, Triangle-Free
Graphs

1 Introduction

The problem of finding the chromatic number of a graph G, i.e. the minimum
number of colors needed to assign distinct colors to adjacent nodes of G, is
NP-complete. However, there are some known bounds including the trivial
lower bound

χ(G) ≥ ω(G)

and the upper bound provided by Brooks [2]

χ(G) ≤ ∆(G) + 1,

where χ(G) denotes the chromatic number, ∆(G) the maximum degree and
ω(G) the number of nodes of a largest clique in G.

In [6], Reed conjectured that

χ(G) ≤
⌈
∆(G) + 1 + ω(G)

2

⌉
.

Note that this upper bound rounds up the arithmetic average of the previous
mentioned upper and lower bounds.

In the following all graphs are simple, undirected and connected. V (G) and
E(G) denote the nodes and edges of G respectively. The degree of v ∈ V (G)
(deg(v)) gives the number of neighbors of v in G.

Email address: weil@zpr.uni-koeln.de (Vera Weil).

CTW2010, University of Cologne, Germany. May 25-27, 2010

Reed [6] proved the existence of a constant ∆0 so that the conjecture holds
for graphs with ∆(G) ≥ ∆0 and ω(G) ≥ ⌊(1− 1

70000000
)∆(G)⌋.

Other graph classes for which the validity of Reed’s conjecture could be shown
have been found, among them the classes listed in Proposition 1. This list
consists of graph classes for which the conjecture follows straightforward from
their definition or for which other authors (sources given in parantheses) have
shown the conjecture holds.

Proposition 1 For the following graphs the conjecture holds:

• complete graphs
• perfect graphs
• circles
• graphs with size of maximum independent set α(G) = 2 ([5])
• line graphs ([4])
• triangle-free graphs with minimum degree δ(G) ≥ n

3
([1])

• triangle-free graphs with chromatic number χ(G) ≤ 4 (consequence of Brooks’
theorem)

In this work we focus on triangle-free graphs (ω(G) = 2), for which Reed’s
conjecture reads as follows:

χ(G)− 1 ≤
⌈
∆(G) + 1

2

⌉
.

In order to investigate the conjecture we search for a triangle-free counterex-
ample with a minimum number of nodes.

Gathering properties of a minimal order counterexample, we can continue a list
already ’started’ in [3]. Some of these properties turn out to be quite fruitful,
in particular the fact that a minimal counterexample has to be vertex-color-
critical, i.e. χ(G− v) < χ(G) for any vertex v of G.

Definition 2 (heavy edge) Let G be a graph. Then we call (x, y) ∈ E(G) a
heavy edge if deg(x) = deg(y) = ∆(G).

Definition 3 (heavy circle) Let G be a graph and C ⊆ V (G) a circle of G.
We call C a heavy circle if

v ∈ V (C) ⇒ deg(v) ≥ ∆(G)− 2.

174

2 Results

Theorem 4 Let G be a triangle-free minimal counterexample to Reed’s con-
jecture. Then ∆(G) = 2χ(G)− 5.

Theorem 5 Let G be a triangle-free minimal counterexample to Reed’s con-
jecture. Then there exists at least one heavy edge.

Theorem 6 Let G be a triangle-free minimal counterexample to Reed’s con-
jecture. Then there exists at least one heavy circle C of odd length.

Moreover, we describe a construction which embeds an arbitrary triangle-free
graph G in a regular triangle-free graph preserving χ(G) and ∆(G). From
this we get that it suffices to prove Reed’s conjecture for regular triangle-free
graphs.

Theorem 7 If Reed’s conjecture holds for all regular triangle-free graphs, it
holds for all triangle-free graphs.

References

[1] S. Brandt, S. Thomassé (2005): Dense triangle-free graphs are four-colorable:
A solution to the Erdös-Simonovits problem. To appear in Journal of
Combinatorial Theory B.
http://www.lirmm.fr/ thomasse/liste/vega11.pdf

[2] R.L. Brooks (1941): On colouring the nodes of a network. Proceedings of the
Cambridge Philosophical Society 37, 194 - 197.

[3] D. Gernert, L. Rabern (2007): A knowledge-based system for graph theory,
demonstrated by partial proofs for graph coloring problems. MATCH Commun.
Math. Comput. Chem., Vol. 58, 445 - 460.

[4] A.D. King, B.A. Reed, A. Vetta (2007): An upper bound for the chromatic
number of line Graphs. European Journal Of Combinatorics, Vol. 28(8), 2182-
2187.

[5] M. Molloy (1991): Chromatic neighbourhood sets. Journal Of Graph Theory,
Vol. 31, 303 - 311.

[6] B. Reed (1998): ω,∆ and χ (OMEGA, DELTA AND CHI). Journal Of Graph
Theory, Vol. 27, 177 - 212.

175

hh

Appendix

Matjaz Konvalinka, Igor Pak
Complexity of O’Hara’s algorithm

hh

Key words:

1 Introduction

Some combinatorial results have an easy proof via generating functions and
a more elusive, but also more interesting and important, bijective proof. It
would be difficult to think of a better example of this than the generalization
of Euler’s classical distinct/odd theorem due to George Andrews (Theorem
1). The proof via generating functions is a trivial one-line calculation. On the
other hand, the simplest bijective proof of this result, O’Hara’s algorithm, is
distinctly non-trivial and has numerous fascinating properties.

Note that a quest to find bijective proofs of partition identities goes back all
to way to the pioneer work of Sylvester and his school. Despite remarkable
successes in the last century (see [P06]) and some recent work of both positive
and negative nature (see e.g. [P04b,P]), the problem remains ambiguous and
largely unresolved. Much of this stems from the lack of clarity as to what
exactly constitutes a bijective proof. Depending on whether one accentuates
simplicity, ability to generalize, the time complexity, geometric structure, or
asymptotic stability, different answers tend to emerge.

In one direction, the subject of partition bijections was revolutionized by Gar-
sia and Milne with their involution principle [GM81a,GM81b]. This is a com-
binatorial construction which allows to use a few basic bijections and involu-
tions to build more involved combinatorial maps. As a consequence, one can
start with a reasonable analytic proof of a partition identity and trace every
step to obtain a (possibly extremely complicated) bijective construction. Gar-
sia and Milne used this route to obtain a long sought bijection proving the
Rogers-Ramanujan identities, resolving an old problem in this sense [GM81b].
Unfortunately, this bijection is too complex to be analyzed and has yet to lead
to new Rogers-Ramanujan type partition identities.

CTW2010, University of Cologne, Germany. May 25-27, 2010

After Garsia-Milne paper, there has been a flurry of activity to obtain synthetic
bijections for large classes of partition identities. Most of these bijections did
not seem to lead anywhere with one notable exception. Remmel and Gordon
found (rather involved) bijective proofs of the above-mentioned partition iden-
tity due to Andrews [R82,G83]. O’Hara’s streamlined proof is in fact a direct
generalization of Glaisher’s classical bijection proving Euler’s theorem. More-
over, in her thesis [O84], O’Hara showed that her bijection is computationally
efficient in certain special cases. Until now, the reason why O’Hara’s bijection
has a number of nice properties distinguishing it from the other “involution
principle bijections” remained mysterious.

In this extended abstract, we present results of both positive and negative
type. First, we analyze the complexity of O’Hara’s bijection, which we view
as a discrete algorithm. Theorem 3 gives an exact formula for the number
of steps of the algorithm in certain cases. From here it follows that O’Hara’s
bijection is computationally efficient in many special cases. On the other hand,
perhaps surprisingly, the number of steps can be (mildly) exponential in the
worst case (Theorem 7 part (3)). This is the first negative result of this kind,
proving the analogue of a conjecture that remains open for the Garsia-Milne’s
“Rogers-Ramanujan bijection” (see Subsection 4.1).

Second, we show that O’Hara’s bijection has a rich underlying geometry. In
a manner similar to that in [P04a,PV05], we view this bijection as a map be-
tween integer points in polytopes which preserves certain linear functionals.
We present an advanced generalization of Andrews’s result and of O’Hara’s
bijection in this geometric setting. In a special case, the working of the map
corresponds to the Euclid algorithm and, more generally, to terms in the con-
tinuing fractions. Thus one can also think of our generalization as a version
of multidimensional continuing fractions.

Finally, by combining the geometric and complexity ideas we see that in the
finite dimensional case the map defined by O’Hara’s bijection is a solution of
an integer linear programming problem. This implies that the map defined by
the bijection can be computed in polynomial time, i.e. much more efficiently
than by O’Hara’s bijection.

The extended abstract is structured as follows. We start with definitions and
notations in Section 2. In Section 3, we describe the main results on both
geometry and complexity. We conclude with final remarks in Section 4.

Due to space constraints, we present almost no proofs. An interested reader is
invited to find the proofs and some other results in the paper [KP], on which
this abstract is based.

2

2 Definitions and background

2.1 Andrews’s theorem

A partition λ is an integer sequence (λ1, λ2, . . . , λℓ) such that λ1 ≥ λ2 ≥
. . . ≥ λℓ > 0, where the integers λi are called the parts of the partition. The
sum n =

∑ℓ
i=1 λi is called the size of λ, denoted |λ|; in this case we say that

λ is a partition of n, and write λ ⊢ n. We can also write λ = 1m12m2 · · · ,
where mi = mi(λ) is the number of parts of λ equal to i. The support of
λ = 1m12m2 · · · is the set {i : mi > 0}. The set of all positive integers will be
denoted by P.

Denote the set of all partitions by P and the set of all partitions of n by Pn.
The number of partitions of n is given by Euler’s formula

∑

λ∈P
t|λ| =

∞∑

n=0

|Pn|tn =
∞∏

i=1

1

1− ti .

For a sequence a = (a1, a2, . . .) with ai ∈ P ∪ {∞}, define A to be the set
of partitions λ with mi(λ) < ai for all i; write An = A ∩ Pn. Denote by
supp(a) = {i : ai <∞} the support of the sequence a.

Let a = (a1, a2, . . .) and b = (b1, b2, . . .). We say that a and b are ϕ-equivalent,
a ∼ϕ b, if ϕ is a bijection supp(a) → supp(b) such that iai = ϕ(i)bϕ(i) for all
i. If a ∼ϕ b for some ϕ, we say that a and b are equivalent, and write a ∼ b.

Theorem 1 (Andrews) If a ∼ b, then |An| = |Bn| for all n.

Proof: We use the notation t∞ = 0. Clearly,

∞∑

n=0

|An|tn =
∞∏

i=1

1− tiai
1− ti =

∞∏

j=1

1− tjbj
1− tj =

∞∑

n=0

|Bn|tn,

which means that |An| = |Bn|. 2

Consider the classical Euler’s theorem on partitions into distinct and odd
parts. For a = (2, 2, . . .) and b = (∞, 1,∞, 1, . . .), An is the set of all par-
titions of n into distinct parts, and Bn is the set of partitions of n into odd
parts. The bijection i 7→ 2i between supp(a) = P and supp(b) = 2P satisfies
iai = ϕ(i)bϕ(i), so a ∼ϕ b and |An| = |Bn|. We refer to this example as the
distinct/odd case.

3

2.2 O’Hara’s algorithm

The analytic proof of Andrews’s theorem shown above does not give an explicit
bijection An → Bn. Such a bijection is, by Theorem 2, given by the following
algorithm.

Algorithm 1 (O’Hara’s algorithm on partitions)

Fix: sequences a ∼ϕ b
Input: λ ∈ A
Set: µ← λ
While: µ contains more than bj copies of j for some j
Do: remove bj copies of j from µ, add ai copies of i to µ, where ϕ(i) = j

Output: ψ(λ)← µ

Theorem 2 (O’Hara) Algorithm 1 stops after a finite number of steps. The
resulting partition ψ(λ) ∈ B is independent of the order of the parts removed
and defines a size-preserving bijection A → B.

Denote by Lϕ(λ) the number of steps O’Hara’s algorithm takes to compute
ψ(λ), and by Lϕ(n) the maximum value of Lϕ(λ) over all λ ⊢ n.

In the distinct/odd case, O’Hara’s algorithm gives the inverse of Glaisher’s
bijection, which maps λ = 1m13m3 · · · ∈ B to the partition µ ∈ A which
contains i2j if and only if mi has a 1 in the j-th position when written in
binary. 2

Let a = (1, 1, 4, 5, 3, 1, 1, . . .), b = (1, 1, 5, 3, 4, 1, 1, . . .) and ϕ(3) = 4, ϕ(4) = 5,
ϕ(5) = 3, ϕ(i) = i for i 6= 3, 4, 5; observe that a ∼ϕ b. Then O’Hara’s algorithm
on λ = 334452 runs as follows:

334452 → 374152 → 324155 → 324651 → 364351

→ 3104051 → 354054 → 304057 → 304553 → 344253

We have Lϕ(λ) = Lϕ(35) = 9. 2

Take a = (2, 2, 1, 2, 2, 1, . . .) and b = (3, 1, 3, 1, . . .). Here A is the set of parti-
tions into distinct parts ≡ ±1 mod 3, and B is the set of partitions into odd
parts, none appearing more than twice. Define ϕ : P→ P as follows:

ϕ(i) =





i if i is divisible by 6

i/3 if i is divisible by 3, but not by 2

2i if i is not divisible by 3

. (1)

4

Clearly, a ∼ϕ b. O’Hara’s algorithm on 112181101141201 runs as follows:

112181101141201 → 112181103141 → 11217281103 → 1121527281102

→ 1121547281101 → 1121567281 → 1121425672 → 1123415672

→ 11255672 → 13245672 → 15235672 → 17225672

→ 19215672 → 1115672 → 1115372151 → 11172152

→ 183172152 → 153272152 → 123372152 → 127291152

The bijection ψ is similar in spirit to Glaisher’s bijection: given λ = 1m12m24m45m5 · · · ∈
A and j ∈ P, the number of copies of part 2j − 1 in ψ(λ) is equal to the k-th
digit in the ternary expansion of l, where k is the highest power of 3 dividing
2j − 1, 2j − 1 = 3kr, and l =

∑
i 2

imr2i . 2

2.3 Equivalent sequences and graphs

Choose equivalent sequences a, b. Define a directed graph Gϕ on supp(a) ∪
supp(b) by drawing an edge from i to j if ϕ(j) = i; an arrow from i to j
therefore means that O’Hara’s algorithm simultaneously removes copies of
i and adds copies of j. Each vertex v has indeg v ≤ 1, outdeg v ≤ 1 and
indeg v + outdeg v ≥ 1. The graph splits into connected components of the
following five types:

(i) cycles of length m ≥ 1;
(ii) paths of length m ≥ 2;
(iii) infinite paths with an ending point, but without a starting point;
(iv) infinite paths with a starting point, but without an ending point;
(v) infinite paths without a starting point or an ending point.

Figure 1 shows portions of graphs Gϕ for certain ϕ:

(1) a = (1, 1, 4, 5, 3, 1, 1, . . .), b = (1, 1, 5, 3, 4, 1, 1, . . .), ϕ(3) = 4, ϕ(4) = 5,
ϕ(5) = 3, ϕ(i) = i for i 6= 3, 4, 5; components of Gϕ are of type (i);

(2) a = (∞, 1, 2, 3,∞,∞,∞, . . .), b = (2, 3, 4,∞,∞,∞,∞, . . .), ϕ(2) = 1,
ϕ(3) = 2, ϕ(4) = 3; Gϕ is of type (ii);

(3) the distinct/odd case: a = (2, 2, . . .), b = (∞, 1,∞, 1, . . .), ϕ(i) = 2i;
components of Gϕ are of type (iii);

(4) the odd/distinct case: a = (∞, 1,∞, 1, . . .), b = (2, 2, . . .), ϕ(i) = i/2;
components of Gϕ are of type (iv);

(5) a = (2, 2, 1, 2, 2, 1, . . .) and b = (3, 1, 3, 1, . . .), ϕ given by (1); components
of Gϕ are of types (i) and (v). 2

5

2

1 3 9248 27

6 12 18 24

7

510

1428

2040

56

15

21

45

63

135

189

3 6

5

12 24

20 4010

1 2 4 81

24 12 6 3

5102040

(1)

1 2

3 (2)

(4)

(5)

(3)

5 4

6 7 8 1 2 3 4

8 4

Fig. 1. Examples of graphs Gϕ.

2.4 Scissor-congruence and Π-congruence

We say that convex polytopes A,B in Rm are congruent, write A ≃ B, if
B can be obtained from A by rotation and translation. For convex polytopes
P,Q ⊂ Rm, we say that they are scissor-congruent if P can be cut into finitely
many polytopes which can be rearranged and assembled into Q, i.e. if P and
Q are the disjoint union of congruent polytopes: P = ∪ni=1Pi, Q = ∪ni=1Qi,
Pi ≃ Qi.

Let π be a linear functional on Rm. If Qi can be obtained from Pi by a
translation by a vector in the hyperplane H = {x ∈ Rm : π(x) = 0}, we say
that P and Q are π-congruent. If P and Q are π-congruent for some linear
functional π, we say that they are Π-congruent.

If P can be cut into countably many polytopes which can be translated by
a vector in the hyperplane H = {x ∈ Rm : π(x) = 0} and assembled into Q,
we say that P and Q are approximately π-congruent. We say that they are
approximately Π-congruent if they are approximately π-congruent for some
linear functional π. If P and Q are approximately π-congruent, there exist,
for every ε > 0, π-congruent polytopes Pε ⊆ P and Qε ⊆ Q, such that
vol(P \ Pε) < ε and vol(Q \Qε) < ε.

Finally, let R(a1, . . . , am) = [0, a1) × · · · × [0, am) be a box in Rm, and let
R(a1, . . . , am) = R(a1, . . . , am) ∩ Zm be the set of its integer points.

6

Let d = 2 and π(x, y) = x + y. Euclid’s algorithm on (a, b) yields a π-
congruence between R(a, b) and R(b, a): if b = r1a + s1 with 0 ≤ s1 < a,
divide [0, a) × [0, r1a) into r1 squares with side a, and translate the square
[0, a) × [ia, (i + 1)a) by the vector (ia,−ia) to [ia, (i + 1)a) × [0, a). Then
write a = r2s1 + s2 with 0 ≤ s2 < s1, divide [0, a) × [r1a, b) into r2 squares
with side s1, and translate the square [is1, (i + 1)s1) × [r1a, b) by the vector
(r1a− is1, is1− r1a) to [r1a, b)× [is1, (i+1)s1). Continue until the remainder
si is equal to 0. The first drawing of Figure 2 gives an example.

The second drawing shows that boxes R(12, 8) and R(32, 3) are π-congruent
for π(x, y) = x + 4y. Finally, in Figure 3 we give a π-congruence between
R(4, 5, 3) and R(5, 3, 4) for π(x, y, z) = 3x+ 4y + 5z. 2

4’2’

2 53 4 6 7

1

1’

3’

4’

5’

6’

7’

2 3

1

1’
2’

3’

4

Fig. 2. Two Π-congruences.

ψ−→

Fig. 3. π-congruence between R(4, 5, 3) and R(5, 3, 4).

3 Main results

3.1 Continuous O’Hara’s algorithm and Π-congruences

Take the case when Gϕ is a cycle i1 → im → im−1 → . . . → i1. In this
case, ϕ(i1) = i2, ϕ(i2) = i3, etc. Throughout this section, identify a partition

7

it11 · · · itmm with the vector t = (t1, . . . , tm). By Theorem 2, O’Hara’s algorithm
defines a bijection ψ : R(a1, . . . , am) → R(b1, . . . , bm), where ijaj = ij+1bj+1

for all j, where the indices are taken cyclically. The following algorithm (see
also Theorem 3) generalizes ψ to the continuous setting. It gives a bijec-
tion ψ : R(a1, . . . , am) → R(b1, . . . , bm), which is defined also for non-integer
aj , bj. When aj , bj are integers, it is an extension of ψ : R(a1, . . . , am) →
R(b1, . . . , bm). As an immediate corollary, we prove that two boxes with ratio-
nal coordinates and with equal volume are Π-congruent. We can use Theorem 3
to give an alternative proof of Theorem 2.

Algorithm 2 (continuous O’Hara’s algorithm)

Fix: i = (i1, . . . , im) ∈ Rm
+

a = (a1, . . . , am) ∈ Rm
+ , b = (b1, . . . , bm) ∈ Rm

+ with ijaj = ij+1bj+1

Input: t ∈ R(a1, . . . , am)
Set: s← t
While: s contains a coordinate sj ≥ bj
Do: sj ← sj − bj , sj−1 ← sj−1 + aj−1

Output: ψ(t)← s

It is clear that the algorithm starts with an element of P = R(a1, . . . , am)
and, if the while loop terminates, outputs an element of Q = R(b1, . . . , bm).
It is not obvious, however, that the loop terminates in every case, or that
the output ψ(t) and the number of steps Lϕ(t) depend only on t, not on the
choices made in the while loop.

Theorem 3 Algorithm 2 has the following properties.

(1) The algorithm stops after a finite number of steps, and the resulting vector
ψ(t) and the number of steps Lϕ(t) are independent of the choices made
during the execution of the algorithm.

(2) The algorithm defines a bijection ψ : P → Q which satisfies ψ(t)−t ∈ H,
where H is the hyperplane defined by i1x1 + . . .+ imxm = 0.

(3) We have

Lϕ(t+ t′) ≥ Lϕ(t) + Lϕ(t
′) for every t, t′, t+ t′ ∈ P.

In particular, Lϕ(t
′) ≤ Lϕ(t) if t

′ ≤ t.
(4) Let t, t′ ∈ P , s = ψ(t), with tj ≤ t′j < tj + εj, where εj = bj − sj. Then

ψ(t′)− t′ = ψ(t)− t and Lϕ(t
′) = Lϕ(t).

(5) For all a,b ∈ Zm
+ , we have

max
t∈P

Lϕ(t) = lcm(c1, . . . , cm) ·
(
1

c1
+ . . .+

1

cm

)
−m,

8

where cj = a1 · · ·aj−1bj · · · bm−1.

We call boxes P = R(a1, . . . , am), Q = R(b1, . . . , bm) relatively rational if
there exists λ, λ 6= 0, such that λaj ∈ Z, λbj ∈ Z. Clearly, two boxes P and Q
with rational side-lengths are relatively rational.

Corollary 4 Boxes P = R(a1, . . . , am), Q = R(b1, . . . , bm) with equal vol-
ume are approximately Π-congruent. Moreover, when P and Q are relatively
rational and have equal volume, they are Π-congruent.

For j = 1, . . . , m, take ij = a1 · · ·aj−1bj+1 · · · bm. Clearly ijaj = ij+1bj+1 for
j = 1, . . . , m− 1, and a1 · · ·am = b1 · · · bm implies imam = i1b1. Therefore, the
numbers ij , aj , bj satisfy the conditions of Algorithm 2. By Theorem 3 part (2),
the algorithm defines a bijection ψ : P → Q. Parts (4) and (2) of Theorem 3
imply that we can cut P into (countably many) smaller boxes, each of which
is translated by a vector in the plane i1x1 + . . .+ imxm = 0.

If P and Q are relatively rational, we can assume without loss of generality
that all aj, bj are integers. For any integer vector t, we have ψ(t

′)−t′ = ψ(t)−t
and Lϕ(t

′) = Lϕ(t) whenever tj ≤ t′j < tj + 1, so P and Q are divided into a
finite number (at most a1 · · ·am) of boxes.

Even in the 3-dimensional case the Π-congruence defined by the algorithm can
be quite complex, as the next figure suggests. Here the same shading is used
for parallel translations by the same vector. 2

Fig. 4. The decomposition of the box R(31, 47, 23) given by O’Hara’s algorithm
(only the top, right, and back sides are shown) .

9

3.2 Complexity of O’Hara’s algorithm

The complexity of O’Hara’s algorithm has been an open problem, with the
exception of the elementary distinct/odd case (see [O84]).

It turns out that the complexity depends heavily on the type of the graph Gϕ

defined in Subsection 2.3. Part (5) of Theorem 3 gives the maximum number of
steps that O’Hara’s algorithm takes when Gϕ is a cycle. The following lemma
gives an estimate for Lϕ(n) when Gϕ is a path.

Lemma 5 Let Gϕ be a finite or infinite path on I ⊆ P. Then Lϕ(n) ≤
n(log n+ 1). Moreover, if

D =
∑

i∈I

1

iai
=

∑

j∈I

1

jbj
<∞,

then Lϕ(n) ≤ Dn. Here, by log n we mean the natural logarithm of n.

Theorem 6 Let a, b be ϕ-equivalent sequences.

(1) If Gϕ has only a finite number of cycles of length > 2, then Lϕ(n) =
O(n logn), and the constants implied by the O-notation are universal.

(2) If Gϕ has only a finite number of cycles of length > m for some m > 2,
then Lϕ(n) = O(nm−1), and the constants implied by the O-notation
depend only on m.

The following theorem gives the corresponding lower bound on the worst case
complexity. It shows that the estimates of Theorem 6 are close to being sharp.

Theorem 7 There exist ϕ-equivalent sequences a and b, such that:

(1) Gϕ is a path and Lϕ(n) = Ω(n log log n);
(2) Gϕ contains only cycles of length ≤ m and Lϕ(n) = Ω(nm−1−ε) for every

ε > 0;
(3) Lϕ(n) = expΩ(3

√
n).

In other words, depending on the type of the graph, we have nearly matching
upper and lower bounds on Lϕ(n). For example, for an m-cycle, Theorem 6
shows that Lϕ(n) is O(nm−1), while Theorem 7 shows that it is Ω(nm−1−ε)
for every ε > 0. Similarly, part (3) shows that O’Hara’s algorithm can be
very slow in general since the total number of partitions of n is asymptotically
expΘ(

√
n).

10

3.3 O’Hara’s algorithm as an integer linear programming problem

Let us now give a new description of O’Hara’s algorithm.

Proposition 8 Let i, a,b ∈ be as above such that ijaj = ij+1bj+1 for j =
1, . . . , m. Fix a vector t ∈ R(a1, . . . , am). Then s = ψ(t) satisfies the follow-
ing:

s = t+ Ak,

where

A =




−b1 a1 0 · · · 0

0 −b2 a2 · · · 0

0 0 −b3 · · · 0
...

...
...

. . .
...

am 0 0 · · · −bm




and k = (k1, . . . , km) is the unique vector minimizing

k1 + . . .+ km

with constraints

k ∈ Zm, k ≥ 0, Ak ≥ −t, Ak ≤ b− 1− t.

Proposition 8 can be used to obtain a significant speed-up of (the usual)
O’Hara’s algorithm, in the case when Gϕ contains only cycles of bounded
length. Namely, we obtain the following result.

Theorem 9 Let a ∼ϕ b. If the lengths of cycles of Gϕ are bounded, there
exists a deterministic algorithm which computes ψ(λ) in O(n logn) steps for
λ ∈ An.

Without loss of generality, the support of λ ∈ An is contained in one of the
connected components of Gϕ. If this connected component is a path, O’Hara’s
algorithm takes O(n logn) steps by Lemma 5. If it is a cycle of length m,
we can use the algorithm described in, say, [S86, Corollary 18.7b] to compute
ψ(λ) in O(logc n) steps for some c. Obviously the O(n logn) term dominates.

11

4 Final remarks

4.1

The polynomial time algorithm in the proof of Theorem 9 is given implicitly,
by using the general results in integer linear programming. It is saying that
the function ψ : An → Bn can be computed much faster, by circumventing the
elegant construction of O’Hara’s algorithm. It would be interesting to give an
explicit construction of such an algorithm.

In a different direction, it might prove useful to restate other involution prin-
ciple bijections in the language of linear programming, such as the Rogers-
Ramanujan bijection in [GM81b] or in [BP06]. If this works, this might lead to
a new type of a bijection between these two classes of partitions. Alternatively,
this might resolve the conjecture by the second author on the mildly expo-
nential complexity of Garsia-Milne’s Rogers-Ramanujan bijection, see [P06,
Conjecture 8.5].

4.2

Note the gap between the number expΘ(
√
n) of partitions of n and the lower

bound Lϕ(n) = expΩ(3
√
n) in Theorem 7. It would be interesting to decide

which of the two worst complexity bounds on the number of steps of O’Hara’s
algorithm is closer to the truth.

Note that we applied our linear programming approach only in the bounded
cycle case. We do not know if there is a way to apply the same technique to the
general case. However, we believe that there are number theoretic obstacles
preventing that and in fact, computing O’Hara’s bijection as a function on
partitions may be hard in the formal complexity sense.

4.3

Recently, variations on the O’Hara’s bijection and applications of rewrite sys-
tems were found in [SSM04] and [K04,K07]. It would be interesting to see
connections between our analysis and this work.

12

4.4

Recall also that the 2-dimensional case can be viewed as the Euclid algorithm
which in turn corresponds to the usual continued fractions (see Example ??).
Thus the geometry of ψ can be viewed as a delicate multidimensional extension
of continued fractions. Given the wide variety of (different) multidimensional
continued fractions available in the literature, it would be interesting to see if
there is a connection to at least one of these notions.

Acknowledgments. We are grateful to George Andrews and Dennis Stanton
for their interest in the paper and to Kathy O’Hara for sending us a copy of
her thesis [O84]. The second named author was supported by the NSF. He
would also like to thank Vladimir Arnold, Elena Korkina and Mark Sapir for
teaching him about multidimensional continued fractions.

References

[A98] G. E. Andrews, The theory of partitions (Second ed.), Cambridge U. Press,
Cambridge, 1998.

[BP06] C. Boulet and I. Pak, A combinatorial proof of the Rogers-Ramanujan
identities, J. Combin. Theory Ser. A 113 (2006), 1019–1030.

[GM81a] A. M. Garsia and S. C. Milne, Method for constructing bijections for
classical partition identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 4,
2026–2028.

[GM81b] A. M. Garsia and S. C. Milne, A Rogers-Ramanujan bijection J. Combin.
Theory Ser. A 31 (1981), 289–339.

[G83] B. Gordon, Sieve-equivalence and explicit bijections, J. Combin. Theory
Ser. A 34 (1983), 90–93.

[K04] M. Kanovich, Finding direct partition bijections by two-directional
rewriting techniques, Discrete Math. 285 (2004), 151–166.

[K07] M. Kanovich, The two-way rewriting in action: removing the mystery of
Euler-Glaisher’s map, Discrete Math. 307 (2007), 1909–1935.

[KP] M. Konvalinka and I. Pak, Geometry and complexity of O’Hara’s
algorithm, to appear in Adv. Appl. Math.

[O84] K. M. O’Hara, Structure and Complexity of the Involution Principle for
Partitions, Ph.D. thesis, UC Berkeley, California, 1984, 135 pp.

[O88] K. M. O’Hara, Bijections for partition identities, J. Combin. Theory Ser.
A 49 (1988), 13–25.

13

[P04a] I. Pak, Partition identities and geometric bijections, Proc. A.M.S. 132
(2004), 3457–3462.

[P04b] I. Pak, The nature of partition bijections I. Involutions, Adv. Applied
Math. 33 (2004), 263–289.

[P06] I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006), 5–75.

[P] I. Pak, The nature of partition bijections II. Asymptotic stability, preprint,
32 pp., available at http://www-math.mit.edu/~pak/

[PV05] I. Pak and E. Vallejo, Combinatorics and geometry of Littlewood-
Richardson cones, Europ. J. Combin. 26 (2005), 995–1008.

[R82] J. B. Remmel, Bijective proofs of some classical partition identities. J.
Combin. Theory Ser. A, 33 (1982), 273–286.

[S86] A. Schrijver, Theory of linear and integer programming, John Wiley,
Chichester, 1986.

[SSM04] J. A. Sellers, A. V. Sills and G. L. Mullen, Bijections and congruences
for generalizations of partition identities of Euler and Guy, Electronic J.
Combin. 11 (2004), no. 1, RP 43, 19 pp.

References

[1]

14

hh

hh

Alphabetical list of authors

Adasme, Pablo 1
Amaldi, Edoardo 5
Andres, Stephan Dominique 9
Bauer, Tomer 13
Baumann, Frank 17
Belotti, Pietro 21
Bettinelli, Andrea 25
Bomhoff, Matthijs 29
Buchheim, Christoph 17
Cacchiani, Valentina 33
Cafieri, Sonia 21
Caprara, Alberto 33
Ceselli, Alberto 37,25
Charon, Irene 43
Cohen, Noam 13
Cordone, Roberto 37
Costa, Alberto 47
Figueiredo, de Celina 51
Fortz, Bernhard 5
Fujishige, Satoru 55
Gonzalez Yero, Ismael 61
Gualandi, Stefano 69,65
Guignard, Adrien 73
Hansen, Pierre 47
Harant, Jochen 79
Harutyunyan, Ararat 83
Hatzl, Johannes 87
Hossain, Shahadat 91
Hudry, Oliver 43
Iuliano, Claudio 5
Jaeger, Gerold 97
Kacem, Imed 101
Kayaaslan, Enver 105
Kern, Walter 109
Konvalinka, Matjaz Appendix
Kosuch, Stefanie 111
Lee, Jon 21
Lemanska, Magdalena 61
Letournel, Marc 111
Liberti, Leo 47,21
Liers, Frauke 17
Lisser, Abdel 111,1

Lozovanu, Dmitrii 115
Machado, Raphael 51
Maffioli, Francesco 69
Magni, Claudio 69
Malucelli, Federico 65
Manthey, Bodo 119,29
Matuschke, Jannik 123
Melzani, Yari 37
Mkrtchyan, Vahan 129
Pak, Igor Appendix
Paulus, Jacob Jan 109
Peis, Britta 55
Petrosyan, Petros 133
Pickl, Stefan 115
Pinciu, Val 137
Plociennik, Kai 119
Righini, Giovanni 37,25
Rija, Erves 141
Rodriguez-Velazquez, Juan 61
Rotovnik, Maja 145
Schaudt, Oliver 149
Schiermeyer, Ingo 153
Shashikyan, Ani 133
Sozzi, Domenico 65
Spoerhase, Joachim 157
Steffen, Eckhard 129
Steihaug, Trond 91
Tomova, Maggy 163
Torosyan, Arman 133
Toth, Paolo 33
Trahtman, Avraham 13
Trotignon, Nicolas 51
Tsai, Ping-Ying 169
Weil, Vera 173
Wyels, Cynthia 163
Zerovnik, Janez 141,145

hh

hh

