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1 Introduction

Let G be a graph with the vertex set V (G) and the edge set E(G). Unless
otherwise stated, we follow [2] for graph terminologies and notations. A path
Pv0,vk

= 〈v0, v1, . . . , vk〉 is a sequence of distinct vertices except possibly v0 = vk

such that every two consecutive vertices are adjacent. The length of a path is
the number of edges on the path. The distance between u and v is denoted by
d(u, v), which is the length of a shortest path between u and v. A cycle is a
special path with at least three vertices such that the first vertex is the same
as the last one. A cycle of length l is referred to as an l-cycle.

An interconnection network is usually modeled as an undirected simple graph,
where the vertices represent processors and the edges represent communica-
tion links between processors. Study of the topological properties of an in-
terconnection network is an important part of the study of any parallel or
distributed system. The alternating group graph [8], which is an instance of
Cayley graphs, is suitable to serve as a network because of its scalability and
other favorable properties, e.g., regularity, recursiveness, symmetry, subloga-
rithmic degree and diameter, and maximal fault tolerance.

Let u = a1a2 · · ·an be a permutation of 1, 2, . . . , n, i.e., ai ∈ {1, 2, . . . , n} and
ai 6= aj for i 6= j. A pair of symbols ai and aj of u are said to be an inversion if
ai < aj whenever i > j. An even permutation is a permutation that contains
an even number of inversions. Let An denote the set of all even permutations
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over {1, 2, . . . , n}. For 3 ≤ i ≤ n, we define two operations, g+
i and g−

i , on An

by setting ug+
i (respectively, ug−

i ) to be the permutation obtained from u by
rotating the symbols a1, a2, ai from left to right (respectively, from right to
left), while retaining the other n−3 symbols stationary. For example, we have
12345g+

4 = 41325 and 12345g−

4 = 24315. The n-dimensional alternating group
graph AGn, has the vertex set V (AGn) = An and the edge set E(AGn) =
{(u, v)|u, v ∈ V (AGn) and v = ug+

i or v = ug−

i for some 3 ≤ i ≤ n}.
It is not difficult to see that AGn is regular with vertex degree 2(n − 2),
|V (AGn)| = n!/2, and |E(AGn)| = (n − 2)n!/2. In addition, AGn is both
vertex symmetric and edge symmetric [8].

For n ≥ 3 and 1 ≤ i ≤ n, let A(i)
n be the subset of An that consists of all even

permutations with element i in the rightmost position, and let AG(i)
n be the

subgraph of AGn induced by A(i)
n . Obviously, AG(i)

n is isomorphic to AGn−1

for every i ∈ {1, 2, . . . , n}. Due to the hierarchical structure, AGn can also be
defined recursively as follows. AGn is constructed from n disjoint copies of (n−
1)-dimensional alternating group graphs AG(i)

n for i ∈ {1, 2, . . . , n} such that
AG(i)

n and AG(j)
n , i 6= j, are connected by (n− 2)! edges, called external edges,

of the form (kj · · · i, ik · · · j) or (jk · · · i, ki · · · j) for k ∈ {1, 2, . . . , n} \ {i, j}.
By contrast, edges joining vertices in the same subgraph AG(i)

n are called
internal edges. In particular, for each internal edge (u, v) with u = kj · · · i
and v = jk′ · · · i in AG(i)

n , there exist two adjacent vertices s = ik · · · j and
t = k′i · · · j in AG(j)

n such that s = ug+
n , t = vg−

n , and 〈u, s, t, v, u〉 forms a
4-cycle in AGn. For convenience, such a property is called the 4-cycle structure

of (u, v). Note that the pair of vertices s and t is uniquely determined by the
4-cycle structure of (u, v). As a result, every vertex u ∈ V (AG(i)

n ) is connected
to exactly 2 external edges and 2n − 6 internal edges.

A path (or cycle) in G is called a Hamiltonian path (or Hamiltonian cycle) if
it contains every vertex of G exactly once. A graph G is called Hamiltonian

if it has a Hamiltonian cycle. G is called Hamiltonian-connected if every two
vertices of G are connected by a Hamiltonian path. For an integer r ≥ 3, G
is called r-pancyclic if it contains an l-cycle for each l with r ≤ l ≤ |V (G)|.
In particular, G is called vertex r-pancyclic (or edge r-pancyclic) if every ver-
tex (or edge) of G belongs to an l-cycle for each l with r ≤ l ≤ |V (G)|. A
3-pancyclic graph, a vertex 3-pancyclic graph, and an edge 3-pancyclic graph
are called pancyclic, vertex-pancyclic, and edge-pancyclic, respectively. Explor-
ing the pancyclicity of the given graph has attracted a lot of mathematicians
[1,9,10]. Recently, some researchers have focused on the problem on intercon-
nection networks because networks with cycle topology are suitable for design-
ing simple algorithms with low communication costs (for example, [5,6,13,16]).

A graph G is panconnected if, for any two distinct vertices u, v ∈ V (G) and
for each integer l with d(u, v) ≤ l ≤ |V (G)| − 1, there is a Pu,v of length l in
G. It was shown in [4] that the alternating group graph is panconnected.
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Lemma 1 ([4]) For n ≥ 3, AGn is panconnected.

Since faults may occur in networks, the consideration of fault-tolerance ability
is a major factor in evaluating the performance of networks. Cycle embedding
is also concerned extensively in many interconnection networks with faulty
elements [7,11,14]. Suppose Fv ⊂ V (G), Fe ⊂ E(G), and F = Fv∪Fe. A graph
G is k-vertex-fault-tolerant pancyclic if G − Fv remains pancyclic whenever
|Fv| ≤ k. A graph G is called k-edge-fault-tolerant pancyclic if G − Fe is
pancyclic whenever |Fe| ≤ k. A graph G is called k-fault-tolerant pancyclic

if G − F remains pancyclic when |F | ≤ k. The notion for k-fault-tolerant

Hamiltonian, k-fault-tolerant Hamiltonian-connected, k-fault-tolerant vertex r-

pancyclic, and k-fault-tolerant edge r-pancyclic can also be defined similarly.

Lemma 2 ([3]) AGn is (n−4)-vertex-fault-tolerant edge 4-pancyclic and (n−
3)-vertex-fault-tolerant vertex-pancyclic, where n ≥ 4.

Lemma 3 ([15]) AGn is (2n−6)-vertex-fault-tolerant pancyclic, where n ≥ 3.

Lemma 4 ([12]) AGn is (2n − 6)-edge-fault-tolerant pancyclic, where n ≥ 3.

Lemma 5 ([12]) AGn is (2n−7)-fault-tolerant Hamiltonian-connected, where

n ≥ 4.

2 Main results

We improve previous results in Lemma 2, Lemma 3, and Lemma 4, by showing
that the n-dimensional alternating group graph AGn is (n − 4)-fault-tolerant
edge 4-pancyclic, (n − 3)-fault-tolerant vertex-pancyclic, and (2n − 6)-fault-
tolerant pancyclic, while considering both faulty vertices and faulty edges. All
the results we achieved here are optimal with respect to the number of faulty
elements tolerated.

Theorem 1 AGn is (n − 4)-fault-tolerant edge 4-pancyclic, where n ≥ 4.

Theorem 2 AGn is (n − 3)-fault-tolerant vertex-pancyclic, where n ≥ 3.

Theorem 3 AGn is (2n − 6)-fault-tolerant pancyclic, where n ≥ 3.

Since a graph is Hamiltonian if it is pancyclic, we have the following Corollary.

Corollary 1 AGn is (2n − 6)-fault-tolerant Hamiltonian, where n ≥ 3.
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