
An Optimal Algorithm for the Indirect

Covering Subtree Problem

Joachim Spoerhase

Lehrstuhl für Informatik I, Universität Würzburg, Am Hubland, 97074 Würzburg,

Germany

Key words: Graph algorithm, coverage, medianoid, tree, efficient algorithm

Introduction Suppose that a company wants to open a number r of fa-
cilities in a given network, modeled by an edge-weighted graph. A potential
customer u, located at some node of the graph, is willing to use the service
provided by that company if the cost thereby incurred is limited by some
bound ̺(u). The costs are modeled by shortest-path distances in the under-
lying graph, that is, the cost for customer u equals the distance to the closest
server of the company. For example, the distances may represent transporta-
tion costs or travel times in a logistical network, but also response times in a
communication network. If the company serves customer u—that is, his dis-
tance to the closest server does not exceed ̺(u)—it earns a profit of w(u),
which generally corresponds to the demand of the customer. The goal of the
company is to identify r locations (nodes of the graph) for its facilities such
that the total profit is maximized.

The resulting optimization problem, called maximum coverage location [MZH83],
is NP-hard for arbitrary graphs. It can, however, be solved in time O(rn2) on
trees [Tam96]. As trees form the sparsest (and thus cheapest) networks con-
necting a given set of nodes they play an important role in many areas of
application such as logistical and communication networks. For example, we
may think of backbones of a computer network, which are often tree-shaped.
This is the case that we investigate in this paper.

In the past years there has been an increasing interest in location problems
combined with connectivity requirements (for example, connected dominating
set, or connected facility location). We follow this line of research and consider
a variant of maximum coverage location on a tree where the facilities are

Email address: joachim.spoerhase@uni-wuerzburg.de (Joachim Spoerhase).

CTW2010, University of Cologne, Germany. May 25-27, 2010

required to form a connected subgraph, that is, a subtree of the input tree.
Albeit consisting of a plurality of nodes, such a subtree is considered as a
single, tree-shaped facility. The cost of this facility is given by its total edge
weight. (The number of nodes within the facility is not bounded.) The goal
is to identify a tree-shaped facility that maximizes the net profit, that is, the
income produced by the customers minus the setup cost of the facility. As
possible application we may think of a company that wants to establish a
high-bandwidth core (tree-shaped facility) in a given communication network
in order to provide some service to potential customers. A customer is only
willing to pay for the service if the response time is sufficiently low.

Kim et al. [KLTW96] introduce the indirect covering subtree problem, which
can be used to model the above scenario. But instead of assigning to each
customer a profit w(u) they assume that a penalty π(u) is imposed on the
company if customer u is not served. The company aims at minimizing the
sum of setup cost and the total penalty cost. It should be clear that both
formulations are equivalent.

Problem Definition The input of the indirect covering subtree problem is
an undirected tree T = (V, E) with non-negative edge weights c : E → R≥0.
The edge weights induce a distance function d : V ×V → R≥0 on the node set.
Each node is associated with a radius ̺(u) and a non-negative penalty π(u).
Consider a subtree Y of T . A node u is said to be covered (indirectly) by Y if
d(u, Y) ≤ ̺(u), that is, if u lies within distance ̺(u) from Y . If u is not covered
by Y , then u imposes a penalty π(u) on Y . If U ⊆ V is a set of nodes then
p(U, Y) :=

∑
{ π(u) | u ∈ U and d(u, Y) > ̺(u) } denotes the penalty imposed

on Y by U . The total penalty imposed on Y is given by p(Y) := p(V, Y). The
indirect covering subtree problem asks for a subtree Y of T such that the total
cost c(Y) + p(Y), given by the sum of setup and penalty cost, is minimum
among all subtrees of T .

If we require that Y be a node rather than a subtree we obtain the single
maximum coverage location problem [MZH83,SW09a]. It is not hard to see
that single maximum coverage location is a special case of indirect covering
subtree. (Scale all edge lengths and radii with a sufficiently large factor while
leaving the penalties unchanged.)

Previous Results The maximum coverage location problem (allowing the
placement of an arbitrary set of r nodes) is NP-hard on general graphs [MZH83]
while it can be solved in time O(rn2) on trees [Tam96]. This leads to an
O(n2) algorithm for the single maximum coverage location problem on trees
by setting r = 1. Kim et al. [KLTW96] provide a faster algorithm running

158

in O(n log2 n). Their algorithm works even for the more general indirect cov-
ering subtree problem. Recently a slightly faster O(n log2 n/ log log n)-time
algorithm for single maximum coverage location has been reported [SW09a].

Our Contribution We propose an O(n logn) algorithm for indirect cov-
ering subtree, which is faster than the previously best algorithms for that
problem and single maximum coverage location on trees. We complement this
result with a matching lower bound on the running showing that our algorithm
is optimal.

Our result also implies faster algorithms for competitive location problems
[Hak83]. Specifically, we obtain an O(n log n) algorithm for (1, X)-medianoid
and O(n2 log n log w(T)) and O(n2 log n log w(T) logD) algorithms for the dis-
crete and absolute (1, p)-centroid problems on trees, respectively. Here, w(T)
denotes the total node weight of the tree and D is the maximum edge weight.
The previously best algorithms are slower by factor of O(log n/ log log n)
[SW09c].

Sketch of the Algorithm We employ the algorithmic framework used by
Kim et al. [KLTW96]. We improve, however, one of their core routines by us-
ing a more sophisticated technique to subdivide trees. This technique, which
we call two-terminal subtree subdivision, is a simplification of the recursive
coarsening strategy [SW09a] used for solving single maximum coverage loca-
tion on a tree. The source of our speedup is that we manage to avoid explicitly
sorting the nodes according to their distances and radii during the recursion,
which has been necessary in the coarsening approach and also in the original
algorithm of Kim et al. A further advantage of our algorithm is that it is a lot
simpler than the recursive coarsening algorithm.

The two-terminal subtree technique has proved successful also for other lo-
cation problems [SW10,SW09b]. We believe that there are further problem
classes where it can be applied.

Our algorithm is based on the so-called bitree model [KLTW96]. A bitree is a
directed graph T ′ that can be derived from an undirected tree T by replacing
any edge (u, v) of T with a pair of anti-parallel arcs (u, v) and (v, u). With each
arc (u, v) of such a bitree T ′ we associate a cost cT ′(u, v). But in contrast to the
edge costs in the indirect covering subtree problem we allow these arc costs to
be negative and asymmetric. This induces a distance function dT ′ : V ×V → R

where dT ′(u, v) is the length of the unique u-v-path in T ′. If v is a node and U a
set of nodes of T ′ we define p′(U, v) :=

∑
{ π(u) | u ∈ U and dT ′(u, v) > ̺(u) }

and p′(v) := p′(V, v) similar to the undirected case.

159

Kim et al. reduce the indirect covering subtree problem to the computation
of p′(v) for all nodes of a given bitree. Specifically, they show that if p′(v)
can be computed in time O(h(n)) for all nodes v of an arbitrary bitree then
the indirect covering subtree problem can be solved in the same asymptotic
running time on undirected trees. They develop a routine to compute the p′(·)-
values of an bitree in total time O(n log2 n). Thus they can also solve indirect
covering subtree in O(n log2 n).

We suggest an algorithm that computes all p′(·)-values of an arbitrary bitree
in O(n logn), which yields our main result.

We assume that any node of the given bitree T ′ has out-degree at most three.
It is not hard to see, that this is no proper restriction. If s and t are distinct
nodes then T ′

st denotes the maximal sub-bitree of T ′ having s and t as leaves.
We call s and t terminals of T ′

st and T ′
st two-terminal sub-bitree (TTSB) of T ′.

Our algorithm divides the input bitree T ′ recursively into TTSBs. Since we
are dealing with a degree-bounded bitree we can subdivide any TTSB T ′

st into
five (or fewer) TTSBs, called child TTSBs of T ′

st, which have bounded size.

Lemma 1 Let T ′
st be a TTSB with maximum out-degree three. Then T ′

st can
be partitioned into five (or fewer) arc-disjoint TTSBs each of which having at
most 1

2
|T ′

st| + 1 nodes. This subdivision can be computed in O(|T ′
st|) time. 2

Consider a TTSB T ′
st. We introduce the lists Ld,s(T

′
st) and L̺,s(T

′
st). Both lists

contain all nodes v of T ′
st sorted in increasing order with respect to the values

dT ′(s, v) and ̺(v)− dT ′(v, s), respectively. The lists Ld,t(T
′
st) and L̺,t(T

′
st) are

defined symmetrically.

Our algorithm computes p′(v, T ′
st) for all v ∈ T ′

st as well as the four lists
Ld,s(T

′
st), Ld,t(T

′
st), L̺,s(T

′
st) and L̺,t(T

′
st) for any TTSB T ′

st occurring during
the recursion. We show that this information can be propagated inductively
from child towards parent TTSBs such that we will have computed p′(·, T ′) =
p′(·) at the top of the recursion. One such propagation step takes time linear
in the size |T ′

st| of the current TTSB T ′
st. Together with Lemma 1 we infer.

Theorem 2 The indirect covering subtree problem and hence also single max-
imum coverage location on a tree can be solved in time O(n logn). 2

We complement our algorithm with a lower bound Ω(n log n) on the running
time for solving single maximum coverage location on a tree. To this end we
introduce a variant of the set disjointness problem, which needs Ω(n log n) time
to be recognized on certain real-number RAMs [BAG01]. Finally, we provide a
linear time reduction from this problem to single maximum coverage location
on a tree.

160

References

[BAG01] A. M. Ben-Amram and Z. Galil. Topological lower bounds on algebraic
random access machines. SIAM Journal on Computing, 31(3):722–761,
2001.

[Hak83] S. L. Hakimi. On locating new facilities in a competitive environment.
European Journal of Operational Research, 12:29–35, 1983.

[KLTW96] T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the location of a
tree-shaped facility. Networks, 28(3):167–175, 1996.

[MZH83] N. Megiddo, E. Zemel, and S. Hakimi. The maximum coverage location
problem. SIAM Journal on Algebraic and Discrete Methods, 4(2):253–
261, 1983.

[SW09a] J. Spoerhase and H.-C. Wirth. An O(n (log n)2/ log log n) algorithm for
the single maximum coverage location or the (1,Xp)-medianoid problem
on trees. Information Processing Letters, 109(8):391–394, 2009.

[SW09b] J. Spoerhase and H.-C. Wirth. Optimally computing all solutions of
Stackelberg with parametric prices and of general monotonous gain
functions on a tree. Journal of Discrete Algorithms, 7(2):256–266, 2009.

[SW09c] J. Spoerhase and H.-C. Wirth. (r, p)-centroid problems on paths and
trees. Theoretical Computer Science, 410(47–49):5128–5137, 2009.

[SW10] J. Spoerhase and H.-C. Wirth. Relaxed voting and competitive
location under monotonous gain functions on trees. Discrete Applied

Mathematics, 158:361–373, 2010.

[Tam96] A. Tamir. An O(pn2) algorithm for the p-median and related problems
on tree graphs. Operations Research Letters, 19:59–64, 1996.

161

