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1 Introduction

All relevant graph classes and graph class inclusions not defined here are dis-
played in [1]. For each graph G, V(G) denotes its set of vertices.

Total domination has been introduced 1980 by Cockayne, Dawes and Hedet-
niemi in [2] and is intensively studied now. A good introduction to the theory
of (total) domination, giving a broad overview of the important results and
applications, is given in [5]. In the problem of total domination, one is in-
terested in determining the value v, (G) of a given graph G, defined as the
smallest size of a subset X C V(@) such that each vertex of G has at least
one neighbor in X.

Let G be a simple undirected graph. A set X C V(G) is said to be an efficiently
total dominating set of G, or an etd set, if each v € V(G) is adjacent to exactly
one vertex in X. G is then said to be an efficiently total dominatable graph,
or G is etd. The corresponding decision problem is denoted by ETD. Let
1 denote the vector with all components equal to 1 of suitable dimension.
ETD can alternatively be defined as the class of graphs whose neighborhood
hypergraph has a perfect matching, as the class of graphs whose adjacency
matrix A accepts the equation Ax = 1 for some Ol-vector z, and as the class
of graphs that have an induced matching, such that each vertex is adjacent to
exactly one matched vertex. There is some literature on efficient domination,
but in the case of efficient total domination, only a few papers have been
published so far (according to our knowledge).
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A simple but important result mentioned in [5] is the following

Theorem 1 (See [5]) Let G be an etd graph. Each etd set X of G has car-
dinality v(G).

We can therefore understand efficient total domination as an extremal case of
total domination. Furthermore, understanding the structure of efficiently total
dominatable graphs and the algorithmical complexity of the corresponding
decision problem may put some light on total domination, too.

2 Main results

Graph classes on which ETD is N P-complete can be obtained by reducing the
well known Exact Cover decision problem (EC) to ETD. Given an arbitrary
01l-matrix A, EC asks for the 01-solvability of Az = 1. It is possible to reduce
EC to ETD in the following way: Let I denote the identity matrix of suitable
dimension. Given a 0l-matrix A, we define a function

X00A

0071
A(X) = (1)
0700

A'T0 0

and observe for each X, that A is in EC iff A(X) is in EC.

As A(0) is the adjacency matrix of a bipartite graph, A(0) is in EC iff this very
graph is in ETD. Let J denote the square matrix with all components equal to
1 of suitable dimension. A(J — I) is the adjacency matrix of a (1, 2)-colorable
chordal graph, i.e. a chordal graph which can be partitioned into a clique and
two independent sets, and A(J — I) is in EC iff this very graph is in ETD. As
EC is well known to be N P-complete, we conclude N P-completeness of ETD
restricted to bipartite graphs and to (1,2)-colorable chordal graphs. As the
class of (1,2)-colorable chordal graphs is only slightly bigger than the class of
split graphs (which are exactly the (1, 1)-colorable graphs) and ETD restricted
to split graphs is trivial, we see that the gap of complexity between the two
classes is big compared to their structural differences.

A further result is inspired by an idea stated by Lozin [7] in the context of
induced matchings. Let F be a (not necessarily finite) set of graphs. We set
K(F) as the supremum over the lengths of all paths in graphs of F, whose
inner vertices have degree 2. For given non negative integers 1, j, k, a star; ;x
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Fig. 1. Tj.

graph is constructed in the following way. Start with three paths consisting
of 7, 7 and k vertices. Choose an endvertex of each path and connect these
to a single new vertex r. For example, a stary o is a path of length £ and a
stary 1 is a claw.

Theorem 2 Let F be a set of graphs with finite K(F) such that there is no
graph of F whose every connected component is a star; j,. ETD restricted to
the class of bipartite F-free graphs is N P-complete.

Choosing F = {K; 4}, we see that ETD is N P-complete on the class of bipar-
tite graphs with maximum degree 3. Summarizing our results, we obtain the
following

Theorem 3 ETD is NP-complete when restricted to the following classes:

e planar bipartite graphs with mazimum degree 3, bipartite graphs, compara-
bility graphs
e (1,2)-colorable chordal graphs, chordal graphs, perfect graphs

In our research we observed that ETD is polynomial time solvable on various
classes. A first class can be obtained by using the property of each balanced
matrix A [3], that the corresponding set partitioning polytope {z : Ax =
1,0 < 2 < 1} only has integral extreme points. Therefore ETD is polynomial
solvable on the class of graphs with balanced adjacency matrices (balanced
graphs, [3]), i.e. graphs which only induce cycles of length four.

Our main results are the polynomial solvability of ETD restricted to claw-free
graphs [8] and to Ts-free chordal graphs [9] (T3 is displayed in Fig. 1).

ETD on claw-free graphs can be reduced to ETD on line graphs in two steps
in polynomial time. ETD on line graphs is reducible to the perfect matching
problem in certain auxiliary graphs in linear time. Therefore, ETD on claw-
free graphs is polynomial time solvable. Furthermore, etd claw-free graphs
are necessarily perfect. Thus, our result can be seen as an example for the
claim stated in [4], that claw-free perfect graphs often accept polynomial time
algorithms for problems which are N P-complete in general.

In the case of Ts-free chordal graphs we use a polynomial time procedure
to label the vertices of the graph with 0 and 1, using the well known perfect
elimination ordering of chordal graphs. Each labeled vertex v is either in every
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etd set of the graph, if v is labeled with 1, or in no etd set, if v is labeled with
0. The etd condition restricted to the unlabeled vertices forms, by T3-freeness,
an instance of 2-SAT. It therefore is a polynomial solvable problem.

Summarizing our results, we obtain the following
Theorem 4 ETD is polynomial solvable when restricted to the following classes:

balanced graphs, chordal bipartite graphs, bipartite permutation graphs
claw-free graphs, line graphs, line graphs of bipartite graphs

T3-free chordal graphs, interval graphs, circular arc graphs

strongly chordal graphs, doubly chordal graphs

Cy-free graphs, co-chordal graphs, split graphs = (1,1)-colorable graphs
Py-free graphs = cographs

If we compare this list with the list of time complexities for total domination
given in [6], we see some interesting differences: Total domination on the classes
of line graphs of bipartite graphs and split graphs is N P-complete, while
polynomially solvable in the case of ETD. On the other hand, ETD is N P-
complete restricted to the class of graphs with adjacency matrix A(0) while
total domination is trivially decidable on this class.
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