
On a Stochastic Knapsack Problem

Stefanie Kosuch and Marc Letournel and Abdel Lisser

Laboratoire de recherche en Informatique, Université Paris Sud
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1 Introduction

The deterministic knapsack problem is a well known and well studied NP-hard
combinatorial optimization problem. It consists in filling a knapsack with items
out of a given set such that the weight capacity of the knapsack is respected
and the total reward maximized. For a review of references on the stochas-
tic knapsack problem, stochastic gradient algorithms and branch-and-bound
methods see [4]. In the deterministic problem, all parameters (item weights,
rewards, knapsack capacity) are known (deterministic). In the stochastic coun-
terpart, some (or all) of these parameters are assumed to be random, i.e. not
known at the moment the decision has to be made.
In this paper, we study the stochastic knapsack problem with expectation
constraint. The item weights are assumed to be independently normally dis-
tributed. We solve the relaxed version of this problem using a stochastic gra-
dient algorithm in order to provide upper bounds for a branch-and-bound
framework. Two approaches to estimate the needed gradients are applied, one
based on Integration by Parts and one using Finite Differences. Finite Differ-
ences is a robust and simple approach with efficient results despite the fact
that the estimated gradients are biased, meanwhile Integration by Parts is
based upon a more theoretical analysis and permits to enlarge the field of
applications.

2 Mathematical formulations

We consider a stochastic knapsack problem of the following form: Given a set
of n items. Each item has a weight that is not known in advance and the
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decision of which items to choose has to be made without the exact knowl-
edge of their weights. Therefore, we handle the weights as random variables
and assume that weight χi of item i is independently normally distributed
with mean µi > 0 and standard deviation σi. Furthermore, each item has a
fix reward per weight unit ri > 0. We denote by χ, µ, σ and r the corre-
sponding n-dimensional vectors. The aim is to maximize the expected total
gain E[

∑n
i=1 riχixi]. In addition, we assume that the knapsack problem has a

fixed weight capacity c > 0. In this paper, we solve the following expectation
constrained knapsack problem:

Expectation Constrained Knapsack Problem (ECKP )

max
x∈{0,1}n

E
[
n∑
i=1

riχixi

]
(1)

s.t. E [HR+(c− g(x, χ))] ≥ p (2)

where E [·] denotes the expectation, g(x, χ) =
∑n
i=1 χixi is the total weight

of the chosen items, HR+ denotes the indicator function of the positive real
interval - the Heaviside function, and p ∈ (0.5, 1] is the prescribed probability.
We refer to the function inside the expectation of the constraint function as
θ, i.e. θ(x, χ) = HR+(c− g(x, χ)).

3 Problem solving method

Due to its combinatorial nature, ECKP can be solved using a branch-and-
bound framework as presented in [4]. To obtain upper bounds, the authors
propose to solve the corresponding continuous optimization problem using a
stochastic gradient type algorithm. A stochastic gradient algorithm is an al-
gorithm that combines both Monte-Carlo techniques and the deterministic
gradient method. More precisely, instead of computing the gradient of the ob-
jective funtion (that is a function in expectation) to determine the direction
of descent, one uses the gradient of the function insight the expectation. By
drawing independent samples of the random variables at each iteration, one
approximates the expectation.
Applying a gradient method to solve the relaxed ECKP is promising as its
objective function is concave and, in addition, constraint (2) defines a convex
feasible set due to the assumption that the weights are independently normally
distributed.
The particular stochastic gradient algorithm used in this work is the Stochas-
tic Arrow-Hurwicz algorithm (hereafter called SAH-algorithm) that uses La-
grangian multipliers to deal with the expectation constraint (for further details
see [3]).
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However, to use such an algorithm for ECKP , one has to estimate the gradi-
ent of the indicator function HR+(·). In this paper, we apply two different ap-
proaches: the first one is a non-biased estimator based on Integration by Parts
(called hereafter IP-method) proposed in [1] to solve continuous stochastic
optimization problems. The second approach is a Finite Differences estimator
(FD-method) presented in [2]. Unlike the IP-method method, the FD-method
provides a biased estimator of the gradient.
In subsection 3.0.1 we present the two methods. Subsection 3.0.2 gives a first
insight in the convergence analysis we conducted.

3.0.1 Gradient computation methods

In the FD-method, the h-th component of the gradient of θ is approximated
by the corresponding difference quotient

θ(x+ δνh, χ)− θ(x− δνh, χ)

2δ

where δ > 0 and νh ∈ {0, 1}n such that νhh = 1 and νhi = 0 for i 6= h.
The basic idea of the IP-method consists in using Integration by Parts to
reformulate E[θ(x, χ)] which gives rise to a function in expectation E[θ̃(x, χ)]
s.t. E[θ̃(x, χ)] = E[θ(x, χ)]. θ̃ is differentiable and the idea is to use the gradient
of θ̃ in the SAH-algorithm. Andrieu et al. presented how to compute such a
θ̃(x, χ) using Integration by Parts (see Theorem 5.5 in [1]). We state and proof
their theorem for the case of ECKP with normally distributed weights.

3.0.2 Convergence analysis

When using the IP-method, main adaptations have been made to correctly
check all hypotheses of convergence. Instead of replacing {0, 1}n by [0, 1]n

when relaxing ECKP , the theoretical analysis compels us to consider a com-
plementary set of a neighborhood of 0[0,1]n . However, assuming that an empty
knapsack is not an optimal solution, it is convenient to consider that the
optimal solution vector of the continuous problem contains at least one com-
ponent xκ with xκ ≥ 1/n. We are thus allowed to replace [0, 1]n by {x ∈
[0, 1]n | ||x||∞ ≥ 1/n} = Xcont. Accordingly, we obtain the following admissible
set of the relaxed ECKP :

Xad
cont = {x ∈ Xcont : E [HR+(c− g(x, χ))] ≥ p}

Checking that all steps of the algorithm stay in this subset is a central point
of our work.
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4 Numerical results for the relaxed and combinatorial ECKP

We tested our algorithms on an instance from the literature as well as on a
great number of randomly generated instances.
Numerical tests of the SAH-algorithm involving the abovementioned adap-
tations have shown that the algorithm converges on all tested instances. We
also compared our approach with a method that has previously been used
to solve the relaxed ECKP . The idea of this method is to reformulate the
problem as a deterministic equivalent second order cone problem (SOCP ) and
to solve it using an interior point algorithm. It turned out that in terms of
running time, our SAH-algorithm outperforms the SOCP approach for small
and medium size instances (up to 1000 items). Concerning the resolution of
the combinatorial problem using a branch-and-bound framework, we are able
to solve problems with up to 250 items in an average computing time of 1h.
In comparison, when using the SOCP procedure one can only solve problems
up to 75 items in comparable time.
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