
Graph Models and their Efficient
Implementation for Sparse Jacobian Matrix

Determination ⋆

Shahadat Hossain a,∗ and Trond Steihaug b

aDepartment of Mathematics and Computer Science, University of Lethbridge,
Canada

bDepartment of Informatics, University of Bergen, Norway

Abstract

Algorithms for solving large-scale combinatorial scientific computing problems aris-
ing in sparse or otherwise structured matrix computation are often represented by
appropriate graph models and sometimes the same problem can be formulated in
more than one graph models with similar asymptotic computational complexity.
The relative merits of different graph models for the same problem can then be
expressed in terms of factors such as generality of the model and ease of computer
implementation. In this note we briefly review the contemporary graph formula-
tions for large-scale sparse Jacobian matrix determination problem (JMDP) and
suggest the pattern graph model which can be viewed as a unifying framework
for the unidirectional and bidirectional approaches for JMDP. Due to the irregu-
lar memory access pattern combined with low floating point calculations relative
to the volume of data movements the actual running time of sparse matrix and
graph algorithms may achieve only a small fraction of the theoretical performance.
We proffer the use of array-based data structures as the basic building-blocks for
efficient implementation of fundamental graph algorithms on modern cache-based
computer architectures. Numerical results comparing our implementation (DSJM
toolkit) with ColPack [4] is given.

Key words: Sparse Matrix Data Structures, Intersection Graph, Bipartite Graph,
Hypergraph, Pattern Graph

1 Introduction

We consider the problem of determining the Jacobian matrix F ′(x) of a map-
ping F : ℜn 7→ ℜm. In this paper graphs are undirected. The colon notation
of [6] is used to specify sections of a matrix. The (i, j)th entry is denoted by

⋆ This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Research Council of Norway (NFR).
∗ Corresponding author.

CTW2010, University of Cologne, Germany. May 25-27, 2010

A(i, j) or aij. When a matrix is displayed the nonzero entries are explicitly
shown while a blank or a ’0’ marks a zero entry. We assume that the sparsity
pattern of matrix F ′(x) is known a priori and that it is computationally more
economical to compute the entire column of F ′(x) than computing individ-
ual entries. Using differences the jth column of the Jacobian matrix may be
approximated as

∂F (x + ts)

∂t

∣

∣

∣

∣

∣

t=0

= F ′(x)s ≈ As =
1

ε
[F (x + εs) − F (x)] ≡ b (1)

with one extra function evaluation. Also Algorithmic Differentiation (AD) [7]
forward mode gives b = F ′(x)s at a cost which is a small multiple of the cost
of one function evaluation. The Jacobian matrix determination problem can
be stated as below.

Problem 1 (JMDP) Obtain vectors si ∈ ℜn, i = 1, . . . , p and wj ∈ ℜm, j =
1, . . . , q with p + q minimized such that the products (bk = Ask, j = 1, · · · , p
or B = AS) and (cT

k = wT
k A, k = 1, · · · , q or CT = W T A) determine the

matrix A uniquely.

In absence of any sparsity information, one may use the Cartesian basis vectors
ei, i = 1, . . . , n in (1) using n extra function evaluations. However, if the
columns are structurally orthogonal i.e. no two columns have nonzero entries
in the same row position only one extra function evaluation

F ′
j + F ′

k ≈ A(:, j) + A(:, k) = 1

ε
[F (x + ε(ej + ek)) − F (x)]

is sufficient to read off the nonzero entries from the product b = As. If the
columns can be partitioned into p structurally orthogonal groups then the
Jacobian matrix is directly determined from the compressed matrix B = AS.
Similarly, the rows can be partitioned into q structurally orthogonal groups
and the Jacobian can be directly determined from CT = W T A using the
reverse mode of AD. The problem of finding minimum cardinality orthogonal
column (or row) partition of matrix A can be solved as different vertex coloring
problems (which in general are NP-hard and therefore are solved by heuristics)
of suitable graph(s) associated with A.

2 Graph Models and Computer Implementation

With regard to the choice of the graph model for the partitioning problem we
expect that the graph formulation

(1) retains exploitable matrix structures,
(2) enables efficient implementation of pertinent algorithms, and
(3) generic enough to encapsulate the combined row-and-column determina-

tion as in Problem JMDP.

92

The intersection graph of the columns of A is denoted by G(A) = (V, E)
where corresponding to A(:, j), j = 1, 2, . . . , n, there is a vertex vj ∈ V and
{vj , vl} ∈ E if and only if A(:, j) and A(:, l), l 6= j have nonzero elements in
the same row position. Then an orthogonal partition of the columns of A is
equivalent to a coloring φ of the vertices of G(A) such that φ(u) 6= φ(v) if and
only if {u, v} ∈ E [1]. Unfortunately, the column intersection graph of A or
AT is unable to expose all the exploitable matrix sparsity. Alternative formu-
lations define graphs based on column segments to allow for better utilization
of available structure or sparsity [8]. However, these alternative formulations
apply to either column direction or row direction but not to a combination of
row and column directions – henceforth bidirectional determination.

The bipartite graph associated with matrix A is denoted by Gb(A) = (Vc ∪
Vr, E) where corresponding to A(:, j), j = 1, 2, . . . , n, there is a column vertex
vj ∈ Vc and corresponding to A(i, :), i = 1, 2, . . . , m, there is a row vertex
vi ∈ Vr and {vi, vj} ∈ E if and only if aij 6= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , m.
The bipartite graph model has been proposed independently by Coleman and
Verma [2] and Hossain and Steihaug [9] in connection with bidirectional de-
termination of Jacobian matrices. In [3] the bipartite graph model has been
considered for column partitioning. The zero-nonzero structure of the underly-
ing matrix is accurately represented in its bipartite graph making it a natural
logical data structure for bidirectional determination. On the other hand, for
the unidirectional determination the model is “asymmetrical” in the sense
that it contains extraneous information. This difficulty is manifested in [3]
where the unidirectional determination posed as distance-2 coloring needed
the qualification “partial” as only one set of vertices are colored.

A hypergraph is a graph in which edges are generalized as hyperedges where a
hyperedge may connect more than vertices. The hypergraph model presented
here is more general than the ones considered in [3]. The hypergraph H(A) =
(V, E) associated with the matrix A has the vertex set

V = {vi|∃k for which aik 6= 0, i = 1, 2, . . . , m} ∪ {vj|∃k for which akj 6= 0, j = 1, 2, . . . , n, }

and corresponding to each row i and each column j the hyperedges ei ∈ E
and ej ∈ E, respectively, are defined by

ei = {vk|aik 6= 0} and ej = {vk|akj 6= 0}.

A lateral neighbor of aij 6= 0 is a nonzero aij′ 6= 0 in row i of A such that j′− j
is the smallest if j′ > j or such that j − j′ is the smallest if j > j′ among all
such indices j′ in row i. Vertical neighbors can be interpreted in an analogous
way with the roles of i and j interchanged. The sparsity-pattern graph (or
simply the pattern graph) associated with A is GP(A) = (V, E), where

V = {vij : aij 6= 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n}

and

{vij , vi′j′} ∈ E if aij and ai′j′ are lateral or vertical neighbors.

93

An unknown aij is said to be covered (by S or W) if it can be uniquely solved
in

Ŝi

T
A(i,Ji)

T = B(i, :)T or A(Ij , j)Ŵj = C(:, j).

where Ŝi(Ŵj) is the submatrix of S(W) corresponding to the nonzero entries
in row i (column j) indicated by Ji(Ij). The matrices S and W are said to
constitute a cover for A if each aij 6= 0 is covered. A cover is a direct cover if A
can be determined directly from the cover. Given a mapping Φ : V 7→ S ∪W
where S = {S1,S2, . . . ,Sp},W = {W1,W2, . . . ,Wq} we define matrices S ∈
{0, 1}n×p and W ∈ {0, 1}m×q,

S(:, k) =
∑

j

ej ,Sk = Φ(vij) and W (:, l) =
∑

i

ei,Wl = Φ(i).

The mapping Φ : V 7→ S ∪ W is said to yield a cover for A if the matrices

S and W constitute a cover for A. Denote by uij
≥1
∼ ui′j′ a path of length at

least 1.

Theorem 2 Let GP(A) = (V, E) be the pattern graph associated with A.
Define the mapping Φ : V 7→ S ∪ W where S = {S1,S2, . . . ,Sp},W =
{W1,W2, . . . ,Wq} such that for each vij ∈ V,

EITHER
(1) (a) vij

≥1
∼ vij′, j 6= j′ implies k 6= k′ where Φ(vij) = Sk, Φ(vij′) = Sk′ and

(b) vij
≥1
∼ vij′

≥1
∼ vi′j′, i 6= i′, j 6= j′ implies k 6= k′ where Φ(vij) =

Sk, Φ(vi′j′) = Sk′

OR
(2) (a) vij

≥1
∼ vi′j, i 6= i′ implies k 6= k′ where Φ(vij) = Wk, Φ(vi′j) = Wk′ and

(b) vij
≥1
∼ vi′j

≥1
∼ vi′j′, i 6= i′, j 6= j′ implies k 6= k′ where Φ(vij) =

Wk, Φ(vi′j′) = Wk′.

Then matrices S and W constitute a direct cover for A.

One of the strengths of the pattern graph model is that the result given above
can be specialized to unidirectional and column segments determinations with-
out changing the graph.

The sparsity pattern of matrix A can be efficiently represented using two
arrays: array colind that stores the column indices of the nonzero entries
row-by-row, and array rowptr that contains the index of the first nonzero ele-
ment of each row of the sparse matrix stored in colind array. For easy access
to the adjacent vertices sparsity pattern of AT is explicitly stored using anal-
ogous arrays rowind and colptr . This storage is of order Θ(max(n, m, nnz))
which meets the design strategies for sparse linear algebra implementation [5].
Next we consider the computations on this data structure relevant to algo-
rithms for Problem JMDP. In many graph coloring heuristics on static graphs
a frequently executed operation is to find the neighbors of a given vertex vj .

94

Assuming vj a column vertex this information is obtained easily as

{{vj, vi}|i = rowind(k), k = colptr(j) : colptr(j+1)-1 } .

This computation can be performed independent of the graph models dis-
cussed above. Further, the array representation ensures better cache perfor-
mance and the computational cost of the operation is proportional to the size
of the data accessed and the number of nonzero arithmetic operations. Clearly,
it is not necessary to compute the intersection graphs explicitly as advocated
in [3]. Indeed, almost all the well-known coloring heuristics for JMDP can be
implemented in time proportional to

∑m
i=1

ρ2

i where ρi denotes the number of
nonzero entries in row i of A. As an indication of the efficiency of the data
structure proposed here we report in the table below the timing experiments
for incidence degree order (IDO) coloring where ot and ct represent order-

Matrix m n nnz ColPack [4] DSJM

ot ct ot ct

lpcreb 9648 77137 260785 13.9 1.49 2.46 1

lpcred 8926 73948 246614 14.79 1.48 2.46 1.01

lpfit2d 25 10524 129042 64.19 24.94 16.32 17.2

lpken18 105127 154699 358171 15.92 0.63 1.47 0.48

lposa07 1118 25067 144812 161.76 28.34 40.84 18.35

ing and coloring times, respectively. ColPack implements IDO coloring with
partial distance-2 coloring scheme on bipartite graph while DSJM implements
IDO coloring using the data structure described here using column intersection
graph. The times reported here do not include data structure set up times.
The sparse matrices are obtained from University of Florida Sparse Matrix
Collection.

References

[1] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM J. Numer. Anal., 20(1):187–209, 1983.

[2] T. F. Coleman and A. Verma. The efficient computation of sparse Jacobian
matrices using automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–
1233, 1998.

[3] A. H. Gebremedhin, F. Manne, and A. Pothen. What Color Is Your Jacobian?
Graph Coloring For Computing Derivatives. SIAM Review, 47(4):629–705.

[4] A. H. Gebremedhin, A. Tarafdar, D. Nguyen, and A. Pothen. ColPack.
http://www.cs.odu.edu/~dnguyen/dox/colpack/html/ (accessed May 2009)

[5] J. R. Gilbert, S. Reinhardt, and V. Shah. High-performance graph algorithms
from parallel sparse matrices. In B. K̊agström, E. Elmroth, J. Dongarra, and
J. Wasniewski, editors, PARA, volume 4699 of Lecture Notes in Computer
Science, pages 260–269. Springer, 2006.

95

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

[7] A. Griewank, Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Appl.
Math. SIAM, Philadelphia, Penn., 2008.

[8] Shahadat Hossain and Trond Steihaug. Graph coloring in the estimation
of sparse derivative matrices: Instances and applications, Discrete Applied
Mathematics, 156(2):280–288, 2008.

[9] A. S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows
and columns. Optimization Methods and Software, 10:33–48, 1998.

96

