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We use [3] for terminology and notation not defined here and consider finite
simple graphs only.
The first major result on the existence of hamiltonian cycles in graphs embed-
dable in surfaces was by H. Whitney [12] in 1931, who proved that 4-connected
maximal planar graphs are hamiltonian. In 1956, W.T. Tutte [10,11] gener-
alized Whitney’s result from maximal planar graphs to arbitrary 4-connected
planar graphs. Actually, Tutte proved that a 4-connected planar graph G has
a hamiltonian cycle through any two edges of a given face of G. Moreover, in
[7,8] it is proved that a 4-connected planar graph G has a hamiltonian cycle
through any three edges of a given face of G or that face is a 3-gon.
Improving a result of C. Thomassen [9], in 1997, D.P. Sanders [7] proved the
following:

Theorem 1 ([7]) Every 4-connected planar graph on at least three vertices
has a hamiltonian cycle through any two of its edges.

In [6] the connectivity of a subset X of the vertex set of a graph G is defined
as follows. Let G be a graph, X ⊆ V (G), and G[X] be the subgraph of G

induced by X. A set V ⊂ V (G) splits X if the graph G − V obtained from G

by removing V contains at least two components each containing a vertex of
X. Let κ(X) be infinity if G[X] is complete, or the minimum cardinality of a
set V ⊂ V (G) splitting X. Let us remark that G is k-connected if and only if
κ(V (G)) ≥ k.

Theorem 2 is a local version of Theorem 1 and in case X = V (G), Theorem 1
follows from Theorem 2. It is proven in [6].

Theorem 2 ([6]) If G is a planar graph, X ⊆ V (G), |X| ≥ 3, κ(X) ≥ 4,
E ⊂ E(G[X]), and |E| ≤ 2, then G contains a cycle C with X ⊆ V (C) and
E ⊂ E(C).
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The following theorem is proven in [4] and, unlike Theorem 2, it is appropriable
if |E| ≥ 3.

Theorem 3 ([4], Theorem 6) If G is a graph, X ⊆ V (G), E 6= ∅ is a set of
independent edges of G[X], |X| ≥ 2|E| + 1, and κ(X) ≥ |X| − |E|, then G

contains a cycle C with X ⊆ V (C) and E ⊂ E(C).

Note that Theorem 3 holds for arbitrary graphs. Obviously |X| ≥ 2|E| since
E is a set of independent edges of G[X]. 1 If X = V (G), |X| − |E| ≥ 6, and
G is planar then Theorem 3 cannot be used since a planar graph is at most
5-connected.

We call a maximal planar graph G a plane triangulation if G is embedded into
the plane. In [1] it was shown that there are 4-connected plane triangulations
containing seven faces of arbitrary distance apart such that each hamiltonian
cycle of that graph misses at least one of these faces, i.e. seven edges cannot
be guaranteed to belong to a hamiltonian cycle of a 4-connected planar graph
even if their pairwise distance is large. Theorem 1 is best possible in the sense
that even three prescribed edges need not belong to a hamiltonian cycle of a
4-connected maximal planar graph. Given two edges xy and uv of a graph G,
the number of edges of a shortest path in G connecting a vertex of {x, y} and
a vertex of {u, v} is called the distance of xy and uv.

Theorem 4 ([5]) There is a 4-connected plane triangulation G containing
E ⊆ E(G) with 3|E| = |E(G)| such that each hamiltonian cycle of G contains
exactly two edges of E. Moreover, for given integer k ≥ 1, G and E can be
chosen such that E contains three edges of pairwise distance at least k.

The situation changes in comparison with Theorem 4, if the connectivity of G

is increased and the pairwise distance of the edges in the set E is at least three.
In this case it is even possible to forbid edges of E to belong to a hamiltonian
cycle as described in the following Theorem 5. A proof is given in [2].

Theorem 5 ([2]) Let G be a 5-connected plane triangulation and E be a set of
edges of G such that the distance between any two edges of E is at least three.
Furthermore, let E = E1 ∪ E2 with E1 ∩ E2 = ∅. Then G has a hamiltonian
cycle C with E1 ⊂ E(C) and E2 ∩ E(C) = ∅.

Theorem 5 does not hold if the 5-connected plane graph G is not a triangu-
lation. Moreover, the existence of a cycle satisfying the assertion of Theorem

1 The inequality |X| ≥ 2|E| + 1 is needed in the proof of Theorem 3 because of
technical reasons. Probably Theorem 3 also holds in case |X| ≥ 2|E|. If in Theorem
3, additionally, G is assumed to be planar, then it remains an open problem whether
the inequality κ(X) ≥ |X| − |E| can be weakened.
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5 cannot be guaranteed in the case |E| ≥ 5 and E2 = ∅, because for each
integer k there is a 5-connected plane graph G containing a set E ⊂ E(G)
with |E| = 5 such that any two edges of E have distance at least k and there
is no cycle of G containing E.

For three edges of a 5-connected plane triangulation the distance condition
in Theorem 5 can be omitted as follows.

Theorem 6 ([5]) Let G be a 5-connected plane triangulation and E be a set
of three edges of G such that E does not form a facial cycle and there is no
vertex incident with all edges of E. Then G has a hamiltonian cycle containing
E.

Considering 5-connected maximal planar graphs, the following theorem is an
analogue to Theorem 4.

Theorem 7 ([5]) Let G be a 5-connected plane triangulation containing an
independent set V of vertices such that each face of G is incident with exactly
one vertex of V and H = G − V is 3-regular. Then each hamiltonian cycle of
G contains exactly 1

3
|E(H)| − 2 = 1

3
(|V (G)| − 8) edges of H.

Let ek be the smallest integer l such that there is a 5-connected plane trian-
gulation G containing l edges of pairwise distance at least k such that there
is no hamiltonian cycle of G containing all these l edges. If ek does not exist
then we write ek = ∞.

Theorem 5 implies that ek = ∞ if k ≥ 3.

Theorem 8 ([5]) For e1 the inequalities 4 ≤ e1 ≤ 9 hold.
Moreover, there are infinitely many 5-connected maximal planar graphs G con-
taining a set E of 1

3
|E(G)| independent edges such that each hamiltonian cycle

of G misses two edges of E.

It remains open whether e2 is finite or not.
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