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1 Introduction

We present new Static Symmetry-Breaking Inequalities (SSBI) [11,6] for the
problem of packing equal circles in a square [9]. The new SSBIs provide a
marked computational improvement with respect to past work [1], though not
yet at the level where a purely Mathematical Programming (MP) based spatial
Branch-and-Bound (sBB) can be competitive with a Branch-and-Bound (BB)
“boosted” by combinatorial and geometrical devices such as [9]. We consider
the following formulation of CIRCLE PACKING IN A SQUARE (CPS) problem:
given N € N and S € Q,, can N non-overlapping circles of unit radius
be arranged in a square of side 257 This is equivalent to the more usual
formulation where one maximizes the number of non-overlapping circles of
unit radius in a square of side 25 with S € Q,: it suffices to consider the
usual correspondence (via bisection) of optimization and decision problems.

Let N ={1,...,N} and N ={1,..., N — 1}. The CPS is formulated as the
following MP:

max{a\Vi<j€./\/(xi—xj)2+(yi—yj)224@/\x,y€ [1—5,5—1]N} (1)

where (z;,y;) € R? are the coordinates of the center of the i-th circle, for all
i € N. For any given N, L > 1, if a global optimum (z*,y*, o*) of (1) has
a* > 1 then the CPS instance is a YES one. The CPS formulation (1) can
be solved with standard off-the-shelf Mixed-Integer Nonlinear Programming
(MINLP) sBB solvers such as COUENNE [2]. As the instance size increases,
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these solvers yield search trees of disproportionate sizes. This is mostly due to
the symmetries of the problem.

The concepts of solution symmetries and formulation symmetries were intro-
duced in Constraint Programming [3] and brought to MP in the early 2000’s
[10,11]. If z is a solution of a problem P and 7z is also a solution (where 7
permutes the components of z), 7 is a solution symmetry. A solution sym-
metry is a formulation symmetry if 7 also fixes the MP formulation of P.
Most symmetry breaking techniques (including SSBIs) are based on formula-
tion symmetries, because these are easier to detect. The formulation group of
MINLPs (including nonconvex NLPs such as (1)) can be detected automati-
cally using the method described in [6]. This method was shown in [7] to yield
an interesting reformulation for another sphere packing problem, namely the
Kissing Number Problem (KNP) [4]. Adjoining SSBIs to a formulation results
in a reformulation of the narrowing type [5,8]: if @ is a narrowing of P then
there is a mapping from the global optima G(Q) to the global optima G(P)
— thus, if one is able to solve the simpler reformulation (), then one can find
a global optimum of P through the given mapping.

The automatic symmetry detection method of [6] was deployed in [1] on in-
creasingly larger CPS instances to formulate the conjecture, and then prove,
that the formulation group of the CPS is Cy x Sy, where Cy (the cyclic group
of order 2) refers to swapping = and y axes and Sy (the symmetric group of
order N) refers to reindexing the circles in an arbitrary way. The constraints
Vi € N (z; < x441) were shown in [1] to provide a narrowing of the CPS when
adjoined to (1). In the rest of this paper we present a different narrowing of
the CPS and discuss its impact on COUENNE’s performance.

2 New SSBI-based CPS narrowing

Let L=[S|,N"={1,L+1,2L+1,...,([N/L] —2)L + 1}, and define the
following constraint sets: . = {x; < x41 |1 € N'}, o, = {ap < xp1 | h €
N'\{i+L—-1}} and 6; = {y; < y;.1} for all i € N”. Notice that these sets
contain strings belonging to the formal MP language [1]: thus, when writing
{y; < yir1}, for example, we do not refer to the set of all points y satisfying
y; < y;+r but rather to the singleton set containing the string “y; < y;.1” as
its element. Accordingly, we consider the following MP formulations: CPS' =
CPSU.¥, CPS; = CPSU%; U, for all i € N and CPS"” = CPSUU;ep (U
%;), where PU% denotes the MP formulation derived by adjoining constraints
in 2 to P. The formulation CPS" was shown in [1] to be a narrowing of CPS.

Proposition 1 For alli € N”, CPS; is a narrowing of CPS.
Proof. Let i € N and (Z,y,@) € G(CPS). For a permutation 7 € Sy we assume

7(Z,9,a) = (7%, 7y, @) where 7 acts on a vector in RY by permuting the indices of
its components; notice that since 7 is simply a reindexing of the circles, 7 (Z, 7, @) €
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G(CPS). Furthermore, since CPS' is known to be a narrowing of CPS, we can assume
WLOG that (Z,y,a) satisfies .. If §; < g;41 the result holds, otherwise assume
Ui > Yirr- Consider the permutation o; = fz_ol(i +/l,i+ L+Y)in Sy; 0i(Z,7, @)
has the following properties: (a) by the action of the 2-cycle (i,i + L) (appearing
in 0; when ¢ = 0) we have y; < gi1r; (b) V¢ € {0,...,L — 2} we have 0,%;4¢ =
Tiyrre < Tigpqor1 = OiTiqpq1 and 034140 = Tige < Tijer1 = OiZipLye4+1; (C)
Vh € N' such that h & H; = {i,...,i+2L— 1} we have 0;% = Tj, < Tpi1 = 0iTp11
because o; fixes all h ¢ H;. Thus 0,(Z,y, &) € G(CPS) and satisfies the constraints
of CPSZ O

Lemma 2 Letn=[N/L] —1 and X ={o; |i € N"}. Then (¥) = S,,.

Proof. Notice N ={(j—1)L+1 |1 < j < n}, and define a map ¢((j—1)/L+1) =

J, under which ¢(X) = {(1,2),(2,3),...,(n — 1,n)}. This map induces a group
homomorphism ¢ : (¥£) — S, given by ¢(0;) = (p(i), (i) + 1), which can be
verified to be injective and surjective. O

Similarly, for all h < k € N” we have (X") = ({o; | h < i < k}) =
Sym(I"%), the symmetric group on the set I"* = {o(h), ..., p(k)}. Thus, for
all h,k € N”, the permutatlon T = L127 (h + (,k + ) can be obtained
as a certain product of the o;’s for i € p~!(I"*). More precisely, we have
The = (p(k) = 1, 0(k))(o(k) =2, 0(k) = 1) - - (p(h), (h) + 1)(@(h) + 1, () +
2) -+ (p(k) =1, 0(k)).

Theorem 3 CPS" is a narrowing of CPS.

Proof. Let (z,y,a) € G(CPS), and consider the set ¥ of all constraints ¢; =
{y; < yi+1} violated by (Z,y,@). Let ¢ be the (invertible) map given by ¢ (%;) =
(p(7), (i) + 1); then ¢(¥) is a set of transpositions that can be partitioned into
maximal non-disjoint subsets S"* = {(¢(h), p(h) +1),..., (k) — 1,0(k))}; let 7
be the set of pairs (h, k) for which S"¥ is in the partition of 1)(¥#). It is easy to verify

that if mp, = [[  sesne Theer k—er then mpiy satisfies the constraints in PSR,
h+{lL<k—CL

Furthermore, by maximality of the S"*, the permutations 7y, are disjoint. Now, if
T = H(h ke Ths 7m(Z,y, &) is such that 7y satisfies all constraints in ¥ and 7z
satisfies all constraints in | J;c\» % by Prop. 1. Thus n(z,7,a) € G(CPS"). O

3 Computational results

We compare COUENNE’Ss py v
performance on formula- Inst. IE nodes tree £~ nodes tree
tions CPS’ and CPS” for 164 || 0.660 | 2381772 | 642285 1 | 2795501 | 839240
TR 25.5 1| 461224 | 188835 1 | 521487 | 222846
some “limit” instances of
36.6 0 49962 | 23784 1 76409 | 34825
CPS (i-e- N circles fit 497 0 12577 6090 1 21366 10136
in the square but N +1 68.8 0 4 1 || 0.943 1057 497
86.9 0 4 1 || o.640 5 1

do mnot). Our compara-
tive results, shown below, have been obtained on a 2.4GHz Intel Xeon CPU
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with 24 GB RAM running Linux. The table displays the following statistics at
termination (10h of CPU time): objective function value f* of the incumbent,
number of BB nodes closed, number of BB nodes still on the tree. The best
upper bound at termination was fixed at 2 (and hence the gap was always
> 100%) for all reformulations and instances. However, the statistics on the
number of nodes show that CPS” is a better reformulation than CPS’. The
incumbent statistics also show that CPS” behaves better than CPS’ when used
to derive heuristic solutions.
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