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1 Introduction

Consider a connected undirected graph G = (V, E) without loops and multiple
edges. Let n = |V | and m = |E| be respectively the number of vertices and
edges. A generalized cycle is a subset of edges C ⊆ E such that every vertex
of V is incident to an even number of edges in C. All the cycles of G form
a vector space, the so-called cycle space. Given an undirected graph G with
a nonnegative weight we assigned to each edge e ∈ E, the Minimum Cycle

Basis problem consists in finding a cycle basis C of minimum total weight
w(C) =

∑
C∈C w(C), where the weight of a cycle is defined as w(C) =

∑
e∈C we.

This problem has been extensively studied, both from the algorithmic and the
structural point of views. See the most recent works [1,2], the survey [9] and
the references therein.

In this work, we investigate an interesting and natural variant, that we refer to
as the Minimum cycle basis with cycles of bounded length problem. Given an
undirected graph G with a nonnegative weight we and a nonnegative length
le assigned to each edge e ∈ E and a positive integer L, we wish to find a
minimum (weight) cycle basis where each cycle C has a length l(C) =

∑
e∈C le

at most L. Without loss of generality we assume nonnegative integer weights
and lengths on all the edges. The special case in which each cycle must contain
at most k edges (le = 1 for each e ∈ E) is referred to as Minimum k-edge-cycle

basis. Cycles with a bounded number of edges naturally arise in a number of
contexts, see for instance [5], where k-edge-cycle bases play an important role.
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2 Minimum cycle bases with cycles of bounded length

The existence of a cycle basis with cycles of length at most L clearly depends
on the value of L and, as also noticed in [7], it can be checked in polynomial
time by looking for a cycle basis with a shortest (in terms of length) longest
cycle, see [3] for the algorithm. Even if the longest cycle has a length smaller
than L it is hard to find one with minimum total weight.

Proposition 1 The problem of finding a minimum cycle basis with cycles of

bounded length is NP-hard.

Proof We proceed by polynomial-time reduction from the Partition problem,
known to be NP-complete [6], to the decision version of the above problem.
In the Partition problem, given a set of N items, each with an integer size
aj , we have to decide whether there exists a subset A of items such that
∑

j∈A aj = 1
2

∑N
j=1 aj . For each instance of the Partition problem it is easy

to construct a special instance of the Minimum cycle basis with cycles of
bounded length problem such that the answer to the former is yes if and
only if the answer to the latter is yes. Consider a graph with 2N + 1 vertices
v1 . . . v2N+1 and assume that they are ordered along a line. For every odd i,
with 1 ≤ i ≤ 2N , vi is connected to vi+1 by an edge with weight a(i+1)/2 and
length 0 and to vi+2 by an edge with length a(i+1)/2 and weight 0. For every
even i, with 1 ≤ i ≤ 2N , vi is connected to vi+1 by an edge with both weight
and length 0. The vertices v1 and v2N+1 are also connected by an edge with
both weight and length 0. Hence, the total number of edges is equal to 3N +1.
Let W = L = 1

2

∑N
j=1 aj . A minimum cycle basis consists of N + 1 cycles: the

N smaller cycles with both weight and length aj (for a partial total weight
2W ) and the larger cycle given by the edge joining v1 and v2N+1 plus a path
through the other vertices. Finding a cycle basis with total weight ≤ 3W and
with cycles whose length is bounded by L corresponds to finding a path with
total weight ≤ W and length ≤ L from v1 to v2N+1 in the above graph without
the edge joining them. This path yields a partition into nonzero-weight edges
and nonzero-length edges that solves the Partition problem. 2

We now show that the Minimum k-edge-cycle basis problem, namely the spe-
cial case where le = 1 for each e ∈ E, can be solved in polynomial time. We
adapt Horton’s approach [8] to the bounded problem. In Horton’s algorithm,
a polynomial subset of candidate cycles is generated. For every vertex x ∈ V
and every edge e = {y, z} ∈ E we consider the cycle C formed by the union
of the two minimum weight paths pxy and pxz from x to the endpoints of e, y
and z, plus the edge e itself, i.e., C = pxy + pxz + {y, z}. We say that C has
a representation (x, {y, z}). The candidate cycles are then sorted by nonde-
creasing weight and a minimum cycle basis is given by the m− n + 1 lightest
independent cycles.
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Unfortunately, a minimum k-edge-cycle basis is not guaranteed to be contained
in the set of Horton candidate cycles. As an example, consider the sunflower
graph in [9, Fig. 7] and assume that the three edges of the internal triangle
have weight equal to 3 whereas the other edges have weight equal to 1. The
unique 3-edge-cycle basis is given by the four triangles, but the internal one
is not a Horton candidate cycle.

The proposition in [8] stating that given a cycle C in a minimum cycle basis, for
any pair of vertices u, v ∈ C the minimum weight path puv must be contained
in C, is no longer valid. Denoting by pl

uv the minimum weight path between
vertices u and v with a most l edges, we have the following result.

Proposition 2 For any two vertices u and v of a cycle C in a minimum

k-edge-cycle basis, let P1(u, v) and P2(u, v) be the two paths joining vertices

u and v in C. Given two integers l1 and l2 greater than the number of edges

in P1(u, v) and P2(u, v), respectively, and such that l1 + l2 = k, at least one

between pl1
uv and pl2

uv must be contained in C.

Proof Suppose it is not true. Then C can be obtained as the composition of
three cycles P1(u, v) + pl2

uv, P2(u, v) + pl1
uv, and pl1

uv + pl2
uv, all of lighter weight

than C and with a number of edges bounded by k. Thus C cannot be contained
in a minimum k-edge-cycle basis. 2

All the candidate k-edge-cycles can be generated by considering C = pl1
xy +

pl2
xz + {y, z} for any vertex x ∈ V , edge e = {y, z} ∈ E and all the k − 2

possible choices of positive integers l1 and l2 such that l1 + l2 = k−1, as in [7].
This naive approach can, however, be improved on by exploiting the notion
of isometric cycle [1] for the unconstrained case. A cycle C is isometric if and
only if it has a representation (x, {y, z}) for each vertex x ∈ C.

Proposition 3 Every isometric cycle C has a representation (x, {y, z}) for

a certain pair of vertex x ∈ V and edge {y, z} ∈ E that is balanced, i.e., such

that the difference between the number of edges in pxy and pxz is 1 if C has an

even number of edges and 0 if odd.

For the lack of space, we cannot report the proof that is based on the efficient
O(nm) procedure for detecting isometric cycles proposed in [1]. The above
result is also valid for cycles with at most k edges. Indeed, we only need to
generate the candidate k-edge-cycles C = pl1

xy + pl2
xz + {y, z} for every vertex

x ∈ V and edge e = {y, z}, for a choice of l1 and l2 leading to a balanced
representation, if it exists. In this set of O(nm) candidate k-edge-cycles, each
cycle has a length of at most k. Since k is a constant, the total number of edges
in all these cycles is O(nm). Thus, by using the improved independence test
recently proposed in [2], we obtain an O(m2n/ log n) deterministic algorithm
like for the unconstrained case. The independence test is inspired by de Pina’s
method [4], that maintains at each step a basis of the linear space that is
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orthogonal to the subspace spanned by the cycles selected so far. It takes
advantage of the divide and conquer scheme presented in [10] and uses a bit
packing technique that exploits the sparseness property, namely the fact that
the number of edges in all the candidate cycles is O(nm).

Finally, it is worth pointing out that, although de Pina’s algorithm [4] (im-
proved in [10]) can be easily adapted to solve Minimum k-edge-cycle basis
problem by just considering minimum weight paths with at most k edges, it
leads to a worse O(m2n + mn2 log n) complexity.
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