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1 Introduction

The studied problem (P) can be formulated as follows. We have to schedule
a set J of n jobs on a single machine, where every job j has a processing
time pj and a tail qj. The machine can process at most one job at a time
and it is unavailable between T1 and T2 (i.e., [T1, T2) is a forbidden interval).
Preemption of jobs is not allowed (jobs have to be performed under the non-
resumable scenario). All jobs are ready to be performed at time 0. With no loss
of generality, we consider that all data are integers and that jobs are indexed
according to Jackson’s rule [1] (i.e., jobs are indexed in nonincreasing order
of tails). Therefore, we assume that q1 ≥ q2 ≥ ... ≥ qn. The consideration of
tails is motivated by the large set of scheduling problems such that jobs have
delivery times after their processing. As an example, it is well-known that
the minimization of makespan with tails is equivalent to the minimization of
the maximum lateness with due dates [2]. Let Cj (S) denote the completion
time of job j in a feasible schedule S for the problem and let ϕS(P) be the
makespan yielded by schedule S for instance I of (P):

ϕS(I) = max
1≤j≤n

(Cj (S) + qj) (1)

The aim is to find a feasible schedule S by minimizing the makespan. Due
to the dominance of Jackson’s order, an optimal schedule is composed of two
sequences of jobs scheduled in nondecreasing order of their indexes.
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If all the jobs can be inserted before T1, the instance studied (I) has obviously
a trivial optimal solution obtained by Jackson’s rule. We therefore consider
only the problems in which all the jobs cannot be scheduled before T1.

In the remainder of this paper ϕ∗(I) denotes the minimal makespan for in-
stance I.

This type of problems has been studied in the literature under various criteria
(a sample of these works includes Lee [7], Kacem [4], Kubzin and Strusevich [6],
Qi et al. [8]-[9], Schmidt [10], He et al. [3]). However, few papers studied the
problem we consider in this paper. Lee [7] explored the Jackson’s sequence
JS and proved that its deviation to the optimal makespan cannot exceed
max1≤j≤n (pj), which is equivalent to state that ϕJS(I) ≤ 2ϕ∗(I). Recently,
Yuan et al. developed an interesting PTAS for the studied problem [11]. That
is why this paper is a good attempt to design more efficient approximation
heuristics and approximation schemes to solve the studied problem.

2 New FPTAS

Now, let describe our FPTAS. It uses a simplification technique based on
merging small jobs [5]. First, we simplify the instance I as follows. Given an
arbitrary ε > 0, we split the interval [0, maxj∈J{qj}] in 1/ε equal lenght inter-
vals and we round up every tail qj to the next multiple of εq (q = maxj∈J{qj}).
Then, we obtain a new instance I ′ with no (1+ε)-loss. Thus, J can be divided
into 1/ε subsets J(k) (1 ≤ k ≤ 1/ε) where jobs in J(k) have identical tails of
kεq. The second modification consists in reducing the number of small jobs in
every subset J(k). Small jobs are those having processing times < εP/2 where
P = p1 + p2 + ... + pn. The reduction is done by merging the small jobs in
each J(k) so that we obtain new greater jobs having processing times between
εP/2 and εP . At most, for every subset J(k), a single small job remains. We
show that this reduction cannot increase the optimal solution value by more
than (1+ε)-factor. We re-index jobs according to nondecreasing order of their
tails. The new instance we obtain is denoted as I ′′. Clearly, the number of
jobs remaining in the simplified instance I ′′ is less than 3/ε.

Our FPTAS is based on two steps. First, we use the Jackson’s sequence JS
obtained for the initial instance I. Then, we apply a modified dynamic pro-
gramming algorithm APS ′

ε on instance I ′′. The main idea of APS ′
ε is to remove

a special part of the states generated by a dynamic programming algorithm
(See Kacem [4]). Therefore, the modified algorithm becomes faster and yields
an approximate solution instead of the optimal schedule.

Given an arbitrary ε > 0, we define n = min{n, 3/ε}, ω1 =
⌈

4n
ε

⌉

, ω2 =
⌈

2n2

ε

⌉

,
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δ1 = ϕJS(I)
ω1

and δ2 = T1

ω2
.

We split [0, ϕJS (I)) into ω1 equal subintervals I1
m = [(m − 1)δ1, mδ1)1≤m≤ω1

.
We also split [0, T1) into ω2 equal subintervals I2

s = [(s − 1)δ2, sδ2)1≤s≤ω2
of

length δ2. Moreover, we define the two singletons I1
ω1+1 = {ϕJS (I)} and

I2
ω2+1 = {T1}. Our algorithm APS ′

ε generates reduced sets X#
k of states [t, f ]

where t is the total processing time of jobs assigned before T1 in the associated
partial schedule and f is the makespan of the same partial schedule. It can be
described as follows:

Algorithm APS ′
ε

(i). Set X#
0 = {[0, 0]}.

(ii). For k ∈ {1, 2, 3, ..., n},
For every state [t, f ] in X#

k−1:

1) Put
[

t, max
(

f, T2 +
∑k

i=1 pi − t + qk

)]

in X#
k

2) Put [t + pk, max (f, t + pk + qk)] in X#
k if t + pk ≤ T1

Remove X#
k−1

Let [t, f ]m,s be the state in X#
k such that f ∈ I1

m and t ∈ I2
s with the

smallest possible t (ties are broken by choosing the state of the smallest
f).

Set X#
k =

{

[t, f ]m,s |1 ≤ m ≤ ω1 + 1, 1 ≤ s ≤ ω2 + 1
}

.

(iii). ϕAPS′

ε
(I) = min[t,f ]∈X#

n
{f}.

Theorem 1 Given an arbitrary ε > 0, algorithm APS ′
ε yields an output

ϕAPS′

ε
(I ′′) such that:

ϕAPS′

ε
(I ′′) − ϕ∗ (I ′′) ≤ εϕ∗ (I ′′) . (2)

The proof will be presented at the conference.

Lemma 2 Given an arbitrary ε > 0, algorithm APS ′
ε can be implemented in

O (n log n + min{n, 1/ε}4/ε2) time.

The schedule obtained by APS ′
ε for instance I ′′ can be easily converted into

a feasible one for instance I. This can be done in O (n) time. ¿From the
previous lemma and theorem, the main result is proved and the following
corollary holds.

Corollary 3 Algorithm APS ′
ε is an FPTAS and it can be implemented in

O (n log n + min{n, 1/ε}4/ε2) time.
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3 Conclusion

In this paper, we considered the non-resumable case of the single machine
scheduling problem with a fixed non-availability interval. Our aim is to min-
imize the makespan when every job has a positive tail. We showed that the
problem has an FPTAS (Fully Polynomial Time Approximation Scheme). Such
an FPTAS is strongly polynomial. The obtained results outperform the pre-
vious polynomial approximation algorithms for this problem.
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